SECOND EDITION

APPLIED
CRYPTOGRAPHY

o 4 l,'l?.-

Protocals, Algorithms, and Source Code in C

Foreword By Whitfield Diffie

The literature of cryptography has a curious history. Secrecy, of course, has always played a central
role, but until the First World War, important developments appeared in print in amore or less
timely fashion and the field moved forward in much the same way as other specialized disciplines.
Aslate as 1918, one of the most influential cryptanalytic papers of the twentieth century, William F.
Friedman’s monograph The Index of Coincidence and Its Applicationsin Cryptography, appeared as
aresearch report of the private Riverbank Laboratories [577]. And this, despite the fact that the work
had been done as part of the war effort. In the same year Edward H. Hebern of Oakland, California
filed the first patent for arotor machine [710], the device destined to be a mainstay of military
cryptography for nearly 50 years.

After the First World War, however, things began to change. U.S. Army and Navy organizations,
working entirely in secret, began to make fundamental advances in cryptography. During the thirties
and forties afew basic papers did appear in the open literature and several treatises on the subject
were published, but the latter were farther and farther behind the state of the art. By the end of the
war the transition was compl ete. With one notable exception, the public literature had died. That
exception was Claude Shannon’ s paper “The Communication Theory of Secrecy Systems,” which
appeared in the Bell System Technical Journal in 1949 [1432]. It was similar to Friedman’s 1918
paper, in that it grew out of wartime work of Shannon’s. After the Second World War ended it was
declassified, possibly by mistake.

From 1949 until 1967 the cryptographic literature was barren. In that year a different sort of
contribution appeared: David Kahn's history, The Codebreakers[794]. It didn’t contain any new
technical ideas, but it did contain a remarkably complete history of what had gone before, including
mention of some things that the government still considered secret. The significance of The
Codebreakerslay not just in its remarkable scope, but also in the fact that it enjoyed good sales and
made tens of thousands of people, who had never given the matter amoment’ s thought, aware of
cryptography. A trickle of new cryptographic papers began to be written.

At about the same time, Horst Feistel, who had earlier worked on identification friend or foe devices
for the Air Force, took his lifelong passion for cryptography to the IBM Watson Laboratory in

Y orktown Heights, New Y ork. There, he began development of what was to become the U.S. Data
Encryption Standard; by the early 1970s several technical reports on this subject by Feistel and his
colleagues had been made public by IBM [1482,1484,552].

Thiswas the situation when | entered the field in late 1972. The cryptographic literature wasn't
abundant, but what there was included some very shiny nuggets.

Cryptology presents a difficulty not found in normal academic disciplines: the need for the proper
interaction of cryptography and cryptanalysis. This arises out of the fact that in the absence of real
communications requirements, it is easy to propose a system that appears unbreakable. Many
academic designs are so complex that the would-be cryptanalyst doesn’t know where to start;
exposing flawsin these designsis far harder than designing them in the first place. The result is that
the competitive process, which is one strong motivation in academic research, cannot take hold.

When Martin Hellman and | proposed public—key cryptography in 1975 [496], one of the indirect
aspects of our contribution was to introduce a problem that does not even appear easy to solve. Now
an aspiring cryptosystem designer could produce something that would be recognized as clever—
something that did more than just turn meaningful text into nonsense. The result has been a
spectacular increase in the number of people working in cryptography, the number of meetings held,
and the number of books and papers published.

In my acceptance speech for the Donald E. Fink award—given for the best expository paper to

appear in an |EEE journal—which | received jointly with Hellman in 1980, | told the audience that
inwriting “Privacy and Authentication,” | had an experience that | suspected was rare even among
the prominent scholars who popul ate the |EEE awards ceremony: | had written the paper | had
wanted to study, but could not find, when | first became seriously interested in cryptography. Had |
been able to go to the Stanford bookstore and pick up a modern cryptography text, | would probably
have learned about the field years earlier. But the only things available in the fall of 1972 were afew
classic papers and some obscure technical reports.

The contemporary researcher has no such problem. The problem now is choosing where to start
among the thousands of papers and dozens of books. The contemporary researcher, yes, but what
about the contemporary programmer or engineer who merely wants to use cryptography? Where
does that person turn? Until now, it has been necessary to spend long hours hunting out and then
studying the research literature before being able to design the sort of cryptographic utilities glibly
described in popular articles.

Thisisthe gap that Bruce Schneier’s Applied Cryptography has come to fill. Beginning with the
objectives of communication security and elementary examples of programs used to achieve these
objectives, Schneier gives us a panoramic view of the fruits of 20 years of public research. Thetitle
saysit al; from the mundane objective of having a secure conversation the very first time you call
someone to the possibilities of digital money and cryptographically secure elections, thisis where
you'll find it.

Not satisfied that the book was about the real world merely because it went all the way down to the
code, Schneier has included an account of the world in which cryptography is devel oped and
applied, and discusses entities ranging from the International Association for Cryptologic Research
to the NSA.

When public interest in cryptography was just emerging in the late seventies and early eighties, the
National Security Agency (NSA), America' s official cryptographic organ, made several attemptsto
guash it. Thefirst was aletter from along—time NSA employee allegedly, avowedly, and apparently
acting on his own. The letter was sent to the IEEE and warned that the publication of cryptographic
material was aviolation of the International Traffic in Arms Regulations (ITAR). Thisviewpoint
turned out not even to be supported by the regulations themsel ves—which contained an explicit
exemption for published material—but gave both the public practice of cryptography and the 1977
Information Theory Workshop lots of unexpected publicity.

A more serious attempt occurred in 1980, when the NSA funded the American Council on Education
to examine the issue with a view to persuading Congress to give it legal control of publicationsin the
field of cryptography. The resultsfell far short of NSA’s ambitions and resulted in a program of
voluntary review of cryptographic papers; researchers were requested to ask the NSA’s opinion on
whether disclosure of results would adversely affect the national interest before publication.

As the eighties progressed, pressure focused more on the practice than the study of cryptography.
Existing laws gave the NSA the power, through the Department of State, to regulate the export of
cryptographic equipment. As business became more and more international and the American
fraction of the world market declined, the pressure to have a single product in both domestic and
offshore markets increased. Such single products were subject to export control and thus the NSA
acquired substantial influence not only over what was exported, but also over what was sold in the
United States.

Asthisiswritten, anew challenge confronts the public practice of cryptography. The government
has augmented the widely published and available Data Encryption Standard, with a secret algorithm
implemented in tamper—resistant chips. These chips will incorporate a codified mechanism of
government monitoring. The negative aspects of this “key—escrow” program range from a potentially

disastrous impact on personal privacy to the high cost of having to add hardware to products that had
previously encrypted in software. So far key escrow products are enjoying less than stellar sales and
the scheme has attracted widespread negative comment, especially from the independent
cryptographers. Some people, however, see more future in programming than politicking and have
redoubled their efforts to provide the world with strong cryptography that is accessible to public
scrutiny.

A sharp step back from the notion that export control law could supersede the First Amendment
seemed to have been taken in 1980 when the Federal Register announcement of arevisionto ITAR
included the statement: “...provision has been added to make it clear that the regulation of the export
of technical data does not purport to interfere with the First Amendment rights of individuals.” But
the fact that tension between the First Amendment and the export control laws has not gone away
should be evident from statements at a conference held by RSA Data Security. NSA’s representative
from the export control office expressed the opinion that people who published cryptographic
programswere “in agrey area’ with respect to the law. If that isso, it isagrey areaon which the
first edition of this book has shed some light. Export applications for the book itself have been
granted, with acknowledgement that published material lay beyond the authority of the Munitions
Control Board. Applications to export the enclosed programs on disk, however, have been denied.

The shift in the NSA’ s strategy, from attempting to control cryptographic research to tightening its
grip on the development and deployment of cryptographic products, is presumably dueto its
realization that all the great cryptographic papersin the world do not protect asingle bit of traffic.
Sitting on the shelf, this volume may be able to do no better than the books and papers that preceded
it, but sitting next to aworkstation, where a programmer iswriting cryptographic code, it just may.

Whitfield Diffie
Mountain View, CA

Preface

There are two kinds of cryptography in thisworld: cryptography that will stop your kid sister from
reading your files, and cryptography that will stop major governments from reading your files. This
book is about the latter.

If | take aletter, lock it in asafe, hide the safe somewherein New Y ork, then tell you to read the
letter, that’ s not security. That’s obscurity. On the other hand, if | take aletter and lock it in a safe,
and then give you the safe along with the design specifications of the safe and a hundred identical
safes with their combinations so that you and the world’ s best safecrackers can study the locking
mechanism—and you still can’t open the safe and read the letter—that’ s security.

For many years, this sort of cryptography was the exclusive domain of the military. The United
States' National Security Agency (NSA), and its counterparts in the former Soviet Union, England,
France, Israel, and elsewhere, have spent billions of dollarsin the very serious game of securing their
own communications while trying to break everyone else’s. Private individuals, with far less
expertise and budget, have been powerless to protect their own privacy against these governments.

During the last 20 years, public academic research in cryptography has exploded. While classical
cryptography has been long used by ordinary citizens, computer cryptography was the exclusive
domain of the world’s militaries since World War Il. Today, state—of—the—art computer cryptography
is practiced outside the secured walls of the military agencies. The layperson can now employ
security practices that can protect against the most powerful of adversaries—security that may
protect against military agencies for years to come.

Do average people really need this kind of security? Yes. They may be planning a political
campaign, discussing taxes, or having an illicit affair. They may be designing a new product,
discussing a marketing strategy, or planning a hostile business takeover. Or they may belivingin a
country that does not respect the rights of privacy of its citizens. They may be doing something that
they feel shouldn’t beillegal, but is. For whatever reason, the data and communications are personal,
private, and no one else’'s business.

This book is being published in atumultuous time. In 1994, the Clinton administration approved the
Escrowed Encryption Standard (including the Clipper chip and Fortezza card) and signed the Digital
Telephony bill into law. Both of these initiatives try to ensure the government’ s ability to conduct
electronic surveillance.

Some dangerously Orwellian assumptions are at work here: that the government has the right to
listen to private communications, and that there is something wrong with a private citizen trying to
keep a secret from the government. Law enforcement has always been able to conduct court—
authorized surveillance if possible, but thisis the first time that the people have been forced to take
active measures to make themselves available for surveillance. These initiatives are not simply
government proposals in some obscure area; they are preemptive and unilateral attempts to usurp
powers that previously belonged to the people.

Clipper and Digital Telephony do not protect privacy; they force individuals to unconditionally trust
that the government will respect their privacy. The same law enforcement authorities who illegally
tapped Martin Luther King Jr.”s phones can easily tap a phone protected with Clipper. In the recent
past, local police authorities have either been charged criminally or sued civilly in numerous
jurisdictions—Maryland, Connecticut, Vermont, Georgia, Missouri, and Nevada—for conducting
illegal wiretaps. It’s a poor ideato deploy atechnology that could some day facilitate a police state.

Thelesson hereisthat it isinsufficient to protect ourselves with laws; we need to protect ourselves
with mathematics. Encryption is too important to be left solely to governments.

This book gives you the tools you need to protect your own privacy; cryptography products may be
declared illegal, but the information will never be.

How to Read This Book

| wrote Applied Cryptography to be both alively introduction to the field of cryptography and a
comprehensive reference. | have tried to keep the text readable without sacrificing accuracy. This
book is not intended to be a mathematical text. Although | have not deliberately given any false
information, | do play fast and loose with theory. For those interested in formalism, there are copious
references to the academic literature.

Chapter 1 introduces cryptography, defines many terms, and briefly discusses precomputer
cryptography.

Chapters 2 through 6 (Part I) describe cryptographic protocols: what people can do with
cryptography. The protocols range from the simple (sending encrypted messages from one person to
another) to the complex (flipping a coin over the telephone) to the esoteric (secure and anonymous
digital money exchange). Some of these protocols are obvious; others are almost amazing.
Cryptography can solve alot of problems that most people never realized it could.

Chapters 7 through 10 (Part I1) discuss cryptographic techniques. All four chaptersin this section are
important for even the most basic uses of cryptography. Chapters 7 and 8 are about keys: how long a
key should be in order to be secure, how to generate keys, how to store keys, how to dispose of keys,
and so on. Key management is the hardest part of cryptography and often the Achilles’ heel of an
otherwise secure system. Chapter 9 discusses different ways of using cryptographic algorithms, and
Chapter 10 gives the odds and ends of algorithms: how to choose, implement, and use algorithms.

Chapters 11 through 23 (Part 111) list algorithms. Chapter 11 provides the mathematical background.
This chapter isonly required if you are interested in public—key algorithms. If you just want to
implement DES (or something similar), you can skip ahead. Chapter 12 discusses DES: the
algorithm, its history, its security, and some variants. Chapters 13, 14, and 15 discuss other block
algorithms; if you want something more secure than DES, skip to the section on IDEA and triple—
DES. If you want to read about a bunch of algorithms, some of which may be more secure than DES,
read the whole chapter. Chapters 16 and 17 discuss stream algorithms. Chapter 18 focuses on one—
way hash functions; MD5 and SHA are the most common, although I discuss many more. Chapter
19 discusses public—key encryption algorithms, Chapter 20 discusses public—key digital signature
algorithms, Chapter 21 discusses public—key identification algorithms, and Chapter 22 discusses
public—key key exchange agorithms. The important algorithms are RSA, DSA, Fiat—Shamir, and
Diffie-Hellman, respectively. Chapter 23 has more esoteric public—key algorithms and protocols; the
math in this chapter is quite complicated, so wear your seat belt.

Chapters 24 and 25 (Part 1V) turn to the real world of cryptography. Chapter 24 discusses some of
the current implementations of these algorithms and protocols, while Chapter 25 touches on some of
the political issues surrounding cryptography. These chapters are by no means intended to be
comprehensive.

Also included are source code listings for 10 algorithms discussed in Part I11. | was unable to include
al the code | wanted to due to space limitations, and cryptographic source code cannot otherwise be
exported. (Amazingly enough, the State Department allowed export of the first edition of this book
with source code, but denied export for a computer disk with the exact same source code on it. Go
figure.) An associated source code disk set includes much more source code than | could fit in this
book; it is probably the largest collection of cryptographic source code outside a military institution.

| can only send source code disks to U.S. and Canadian citizensliving in the U.S. and Canada, but
hopefully that will change someday. If you are interested in implementing or playing with the

cryptographic algorithmsin this book, get the disk. See the last page of the book for details.

One criticism of this book is that its encyclopedic nature takes away from its readability. Thisistrue,
but | wanted to provide a single reference for those who might come across an algorithm in the
academic literature or in a product. For those who are more interested in atutorial, | apologize. A lot
isbeing done in the field; thisis the first time so much of it has been gathered between two covers.
Even so, space considerations forced me to leave many things out. | covered topics that | felt were
important, practical, or interesting. If | couldn’t cover atopic in depth, | gave referencesto articles
and papers that did.

| have done my best to hunt down and eradicate all errorsin this book, but many have assured me
that it is an impossible task. Certainly, the second edition has far fewer errors than the first. An errata
listing is available from me and will be periodically posted to the Usenet newsgroup sci.crypt. If any
reader finds an error, please let me know. I’ ll send the first person to find each error in the book a
free copy of the source code disk.

About the Author

BRUCE SCHNEIER is president of Counterpane Systems, an Oak Park, Illinois consulting firm
specializing in cryptography and computer security. Bruceis also the author of E-Mail Security
(John Wiley & Sons, 1995) and Protect Your Macintosh (Peachpit Press, 1994); and has written
dozens of articles on cryptography for major magazines. He is a contributing editor to Dr. Dobb's
Journal, where he edits the “ Algorithms Alley” column, and a contributing editor to Computer and
Communications Security Reviews. Bruce serves on the board of directors of the International
Association for Cryptologic Research, is amember of the Advisory Board for the Electronic Privacy
Information Center, and is on the program committee for the New Security Paradigms Workshop. In
addition, he finds time to give frequent lectures on cryptography, computer security, and privacy.

Acknowledgments

Thelist of people who had a hand in this book may seem unending, but all are worthy of mention. |
would like to thank Don Alvarez, Ross Anderson, Dave Balenson, Karl Barrus, Steve Bellovin, Dan
Bernstein, Eli Biham, Joan Boyar, Karen Cooper, Whit Diffie, Joan Feigenbaum, Phil Karn, Neal
Koblitz, XugjiaLal, Tom Leranth, Mike Markowitz, Ralph Merkle, Bill Patton, Peter Pearson,
Charles Pfleeger, Ken Pizzini, Bart Preneel, Mark Riordan, Joachim Schurman, and Marc Schwartz
for reading and editing al or parts of the first edition; Marc Vauclair for trandating the first edition
into French; Abe Abraham, Ross Anderson, Dave Banisar, Steve Bellovin, Eli Biham, Matt Bishop,
Matt Blaze, Gary Carter, Jan Camenisch, Claude Cre peau, Joan Daemen, Jorge Davila, Ed Dawson,
Whit Diffie, Carl Ellison, Joan Feigenbaum, Niels Ferguson, Matt Franklin, Rosario Gennaro, Dieter
Gollmann, Mark Goresky, Richard Graveman, Stuart Haber, Jingman He, Bob Hogue, Kenneth
Iversen, Markus Jakobsson, Burt Kaliski, Phil Karn, John Kelsey, John Kennedy, Lars Knudsen,
Paul Kocher, John Ladwig, XugjiaLai, Arjen Lenstra, Paul Leyland, Mike Markowitz, JJm Massey,
Bruce McNair, William Hugh Murray, Roger Needham, Clif Neuman, Kaisa Nyberg, Luke

O’ Connor, Peter Pearson, Rene Peralta, Bart Preneel, Yisrael Radai, Matt Robshaw, Michael Roe,
Phil Rogaway, Avi Rubin, Paul Rubin, Selwyn Russell, Kazue Sako, Mahmoud Salmasizadeh,
Markus Stadler, Dmitry Titov, Jmmy Upton, Marc Vauclair, Serge Vaudenay, Gideon Y uval, Glen
Zorn, and several anonymous government employees for reading and editing all or parts of the
second edition; Lawrie Brown, Leisa Condie, Joan Daemen, Peter Gutmann, Alan Insley, Chris
Johnston, John Kelsey, XugjiaLai, Bill Leininger, Mike Markowitz, Richard Outerbridge, Peter
Pearson, Ken Pizzini, Colin Plumb, RSA Data Security, Inc., Michael Roe, Michael Wood, and Phil
Zimmermann for providing source code; Paul MacNerland for creating the figures for the first
edition; Karen Cooper for copyediting the second edition; Beth Friedman for proofreading the
second edition; Carol Kennedy for indexing the second edition; the readers of sci.crypt and the
Cypherpunks mailing list for commenting on ideas, answering questions, and finding errorsin the
first edition; Randy Seuss for providing Internet access; Jeff Duntemann and Jon Erickson for
helping me get started; assorted random Insleys for the impetus, encouragement, support,
conversations, friendship, and dinners; and AT& T Bell Labs for firing me and making this al
possible. All these people helped to create afar better book than I could have created alone.

Bruce Schneier
Oak Park, III.
schneier @counterpane.com

Foreword by Whitfield Diffie

Pr eface

About the Author

Chapter 1—Foundations

1.1 Terminology

1.2 Steganogr aphy

1.3 Substitution Ciphers and Transposition Ciphers
1.4 Smple XOR

1.5 One-Time Pads

1.6 Computer Algorithms

1.7 Large Numbers

Part | —Cryptogr aphic Protocols

Chapter 2—Protocol Building Blocks

2.1 Introduction to Protocols

2.2 Communications Using Symmetric Cryptography
2.3 One-Way Functions

2.4 One-Way Hash Functions

2.5 Communications Using Public-K ey Cryptogr aphy
2.6 Digital Signatures

2.7 Digital Signatureswith Encryption

2.8 Random and Pseudo-Random-Sequence Gener ation

Chapter 3—Basic Protocols

3.1 Key Exchange

3.2 Authentication

3.3 Authentication and Key Exchange

3.4 Formal Analysis of Authentication and K ey-Exchange Protocols
3.5 Multiple-K ey Public-K ey Cryptography

3.6 Secret Splitting

3.7 Secret Sharing

3.8 Cryptographic Protection of Databases

Chapter 4—Intermediate Protocols

4.1 Timestamping Services

4.2 Subliminal Channel

4.3 Undeniable Digital Signatures
4.4 Designated Confirmer Signatures
4.5 Proxy Signatures

4.6 Group Signatures

4.7 Fail-Stop Digital Signatures

4.8 Computing with Encrypted Data
4.9 Bit Commitment

4.10 Fair Coin Flips

4.11 Mental Poker

4.12 One-Way Accumulators

4.13 All-or-Nothing Disclosur e of Secrets
4.14 Key Escrow

Chapter 5—Advanced Protocols

5.1 Zer o-K nowledge Proofs

5.2 Zero-K nowledge Proofs of | dentity

5.3 Blind Signatures

5.4 | dentity-Based Public-K ey Cryptography
5.5 Oblivious Transfer

5.6 Oblivious Signatures

5.7 Simultaneous Contract Signing

5.8 Digital Certified Mail

5.9 Simultaneous Exchange of Secrets
Chapter 6—Esoteric Protocols

6.1 Secure Elections

6.2 Secure Multiparty Computation

6.3 Anonymous M essage Broadcast

6.4 Digital Cash

Part |1—Cryptogr aphic Techniques

Chapter 7—Key Length
7.1 Symmetric Key L ength
7.2 Public-Key Key L ength
7.3 Comparing Symmetric and Public-Key Key Length
7.4 Birthday Attacks against One-Way Hash Functions
7.5 How Long Should a Key Be?
7.6 Caveat Emptor
Chapter 8—K ey M anagement
8.1 Generating Keys
8.2 Nonlinear K eyspaces
8.3 Transferring Keys
8.4 Verifying Keys
8.5 Using Keys
8.6 Updating Keys
8.7 Storing Keys
8.8 Backup Keys
8.9 Compromised Keys
8.10 Lifetime of Keys
8.11 Destroying Keys
8.12 Public-Key Key M anagement
Chapter 9—Algorithm Typesand M odes
9.1 Electronic Codebook M ode
9.2 Block Replay
9.3 Cipher Block Chaining M ode
9.4 Stream Ciphers
9.5 Self-Synchronizing Stream Ciphers
9.6 Cipher-Feedback Mode
9.7 Synchronous Stream Ciphers
9.8 Output-Feedback M ode
9.9 Counter Mode
9.10 Other Block-Cipher Modes
9.11 Choosing a Cipher Mode
9.12 Interleaving
9.13 Block Ciphersversus Stream Ciphers
Chapter 10—Using Algorithms
10.1 Choosing an Algorithm
10.2 Public-Key Cryptography versus Symmetric Cryptography
10.3 Encrypting Communications Channels
10.4 Encrypting Data for Storage
10.5 Hardwar e Encryption ver sus Softwar e Encryption
10.6 Compression, Encoding, and Encryption
10.7 Detecting Encryption
10.8 Hiding Ciphertext in Ciphertext
10.9 Destroying | nfor mation

Part 111—Cryptographic Algorithms

Chapter 11—M athematical Background

11.1 Information Theory

11.2 Complexity Theory

11.3 Number Theory

11.4 Factoring

11.5 Prime Number Generation

11.6 Discrete L ogarithmsin a Finite Field
Chapter 12—Data Encryption Standard (DES)

12.1 Background

12.2 Description of DES

12.3 Security of DES

12.4 Differential and Linear Cryptanalysis

12.5 The Real Design Criteria

12.6 DES Variants

12.7 How Secure s DES Today?
Chapter 13—Other Block Ciphers

13.1 L ucifer

13.2 Madryga

13.3 NewDES

13.4 FEAL

13.5 REDOC

13.6 LOKI

13.7 Khufu and Khafre

13.8 RC2

13.9IDEA

13.10MMB

13.11 CA-1.1

13.12 Skipjack
Chapter 14—Still Other Block Ciphers

14.1 GOST

14.2 CAST

14.3 Blowfish

14.4 SAFER

14.5 3-Way

14.6 Crab

14.7 SXAL8/MBAL

14.8 RC5

14.9 Other Block Algorithms

14.10 Theory of Block Cipher Design

14.11 Using one-Way Hash Functions

14.12 Choosing a Block Algorithm
Chapter 15—Combining Block Ciphers

15.1 Double Encryption

15.2 Triple Encryption

15.3 Doubling the Block L ength

15.4 Other Multiple Encryption Schemes

15.5 CDMF Key Shortening

15.6 Whitening

15.7 Cascading Multiple Block Algorithms

15.8 Combining Multiple Block Algorithms
Chapter 16—Pseudo-Random-Sequence Generatorsand Stream Ciphers

16.1 Linear Congruential Generators

16.2 Linear Feedback Shift Registers

16.3 Design and Analysis of Stream Ciphers
16.4 Stream CiphersUsing L FSRs

16.5 A5

16.6 Hughes XPD/KPD

16.7 Nanoteq

16.8 Rambutan

16.9 Additive Generators

16.10 Gifford

16.11 Algorithm M

16.12 PKZIP

Chapter 17—Other Stream Ciphers and Real Random-Sequence

Generators
17.1RC4
17.2 SEAL
17.3WAKE
17.4 Feedback with Carry Shift Registers
17.5 Stream CiphersUsing FCSRs
17.6 Nonlinear -Feedback Shift Registers
17.7 Other Stream Ciphers
17.8 System-Theor etic Approach to Stream-Cipher Design
17.9 Complexity-Theor etic Approach to Stream-Cipher Design
17.10 Other Approachesto Stream-Cipher Design
17.11 Cascading M ultiple Stream Ciphers
17.12 Choosing a Stream Cipher
17.13 Generating Multiple Streams from a Single Pseudo-Random-Sequence
Generator
17.14 Real Random-Sequence Generators
Chapter 18—0One-Way Hash Functions

18.1 Background

18.2 Snefru

18.3 N- Hash

18.4 M D4

18.5 MD5

18.6 MD2

18.7 Secure Hash Algorithm (SHA)

18.8 RIPE-MD

18.9 HAVAL

18.10 Other One-Way Hash Functions
18.11 One-Way Hash Functions Using Symmetric Block Algorithms
18.12 Using Public-Key Algorithms

18.13 Choosing a One-Way Hash Function
18.14 M essage Authentication Codes

Chapter 19—Public-Key Algorithms

19.1 Background

19.2 Knapsack Algorithms

19.3RSA

19.4 Pohlig-Hellman

19.5 Rabin

19.6 EIGamal

19.7 M cEliece

19.8 Elliptic Curve Cryptosystems

199LUC

19.10 Finite Automaton Public-K ey Cryptosystems

Chapter 20—Public-K ey Digital Signature Algorithms

20.1 Digital Signature Algorithm (DSA)

20.2 DSA Variants

20.3 Gost Digital Signature Algorithm

20.4 Discrete L ogarithm Signatur e Schemes

20.5 Ong-Schnorr-Shamir

20.6 ESIGN

20.7 Céllular Automata

20.8 Other Public-Key Algorithms
Chapter 21—Identification Schemes

21.1 Feige-Fiat-Shamir

21.2 Guillou-Quisquater

21.3 Schnorr

21.4 Converting I dentification Schemesto Signature Schemes

Chapter 22—K ey-Exchange Algorithms
22.1 Diffie-Hellman
22.2 Station-to-Station Protocol
22.3 Shamir’s T hree-Pass Pr otocol
224 COMSET
22.5 Encrypted Key Exchange
22.6 Fortified Key Negotiation

22.7 Conference Key Distribution and Secret Broadcasting

Chapter 23—Special Algorithmsfor Protocols
23.1 Multiple-Key Public-Key Cryptogr aphy
23.2 Secret-Sharing Algorithms
23.3 Subliminal Channe€l
23.4 Undeniable Digital Signatures
23.5 Designated Confirmer Signatures
23.6 Computing with Encrypted Data
23.7 Fair Coin Flips
23.8 One-Way Accumulators
23.9 All-or-Nothing Disclosur e of Secrets
23.10 Fair and Failsafe Cryptosystems
23.11 Zero-Knowledge Pr oofs of K nowledge
23.12 Blind Signatures
23.13 Oblivious Transfer
23.14 Secure M ultiparty Computation
23.15 Probabilistic Encryption
23.16 Quantum Cryptography

Part IV—The Real World

Chapter 24—Example Il mplementations
24.1 IBM Secret-K ey M anagement Protocol
24.2 MITRENET
24.3 ISDN
24.4 STU-111
24.5 Kerberos
24.6 KryptoK night
24.7 SESAME
24.8 I1BM Common Cryptographic Architecture
24.9 1SO Authentication Framework
24.10 Privacy-Enhanced Mail (PEM)

24.11 M essage Security Protocol (M SP)
24.12 Pretty Good Privacy (PGP)
24.13 Smart Cards

24.14 Public-K ey Cryptography Standards (PKCS)

24.15 Universal Electronic Payment System (UEPS)

24.16 Clipper

24.17 Capstone

24.18 AT& T Model 3600 Telephone Security Device (T SD)

Chapter 25—Palitics

25.1 National Security Agency (NSA)

25.2 National Computer Security Center (NCSC)

25.3 National | nstitute of Standards and Technology (NIST)
25.4 RSA Data Security, Inc.

25.5 Public Key Partners

25.6 International Association for Cryptologic Research (IACR)

25.7 RACE Integrity Primitives Evaluation (RI PE)

25.8 Conditional Accessfor Europe (CAFE)

25.9 |SO/IEC 9979

25.10 Professional, Civil Liberties, and Industry Groups
25.11 Sci.crypt

25.12 Cypherpunks

25.13 Patents

25.14 U.S. Export Rules

25.15 Foreign Import and Export of Cryptography
25.16 L egal |ssues

Afterword by M att Blaze

Part V—Sour ce Code

References

| ndex

Chapter 1
Foundations

1.1 Terminology

Sender and Receiver

Suppose a sender wants to send a message to areceiver. Moreover, this sender wants to send the
message securely: She wants to make sure an eavesdropper cannot read the message.

Messages and Encryption

A message is plaintext (sometimes called cleartext). The process of disguising a message in such a
way as to hide its substance is encryption. An encrypted message is ciphertext. The process of
turning ciphertext back into plaintext is decryption. Thisisall shownin Figure 1.1.

(If you want to follow the 1SO 7498-2 standard, use the terms "encipher” and "decipher.” It seems
that some cultures find the terms "encrypt" and "decrypt" offensive, as they refer to dead bodies.)

The art and science of keeping messages secure is cryptography, and it is practiced by
cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and science of breaking
ciphertext; that is, seeing through the disguise. The branch of mathematics encompassing both
cryptography and cryptanalysisis cryptology and its practitioners are cryptologists. Modern
cryptologists are generally trained in theoretical mathematics—they have to be.

Origing:

DELPDRE orrmeeeeesrsnneeeeeess il o N S HE ks

el AT fee e =k Bnoiyialin e b

...

Figure 1.1 Encryption and Decryption.

Plaintext is denoted by M, for message, or P, for plaintext. It can be a stream of bits, atext file, a
bitmap, a stream of digitized voice, adigital video image...whatever. Asfar asacomputer is
concerned, M issimply binary data. (After this chapter, this book concernsitself with binary data
and computer cryptography.) The plaintext can be intended for either transmission or storage. In any
case, M is the message to be encrypted.

Ciphertext is denoted by C. It isalso binary data: sometimes the same size as M, sometimes larger.
(By combining encryption with compression, C may be smaller than M. However, encryption does
not accomplish this.) The encryption function E, operates on M to produce C. Or, in mathematical
notation:

EMM)=C
In the reverse process, the decryption function D operates on C to produce M:

D(C) =M

Since the whole point of encrypting and then decrypting a message is to recover the original
plaintext, the following identity must hold true:

D(E(M)) =M

Authentication, I ntegrity, and Nonrepudiation

In addition to providing confidentiality, cryptography is often asked to do other jobs:

— Authentication. It should be possible for the receiver of a message to ascertain its origin;
an intruder should not be able to masquerade as someone el se.

— Integrity. It should be possible for the receiver of a message to verify that it has not been
modified in transit; an intruder should not be able to substitute a false message for alegitimate
one.

— Nonrepudiation. A sender should not be able to falsely deny later that he sent a message.

These are vital requirements for social interaction on computers, and are analogous to face-to-face
interactions. That someone iswho he says heis...that someone’s credentials—whether adriver’s
license, amedical degree, or a passport—are valid...that a document purporting to come from a
person actually came from that person.... These are the things that authentication, integrity, and
nonrepudiation provide.

Algorithms and Keys

A cryptographic algorithm, also called a cipher, is the mathematical function used for encryption
and decryption. (Generally, there are two related functions: one for encryption and the other for
decryption.)

If the security of an algorithm is based on keeping the way that algorithm works a secret, it isa
restricted algorithm. Restricted algorithms have historical interest, but are woefully inadequate by
today’ s standards. A large or changing group of users cannot use them, because every time a user
leaves the group everyone else must switch to adifferent algorithm. If someone accidentally reveals
the secret, everyone must change their algorithm.

Even more damning, restricted algorithms allow no quality control or standardization. Every group
of users must have their own unique algorithm. Such a group can’'t use off-the-shelf hardware or
software products; an eavesdropper can buy the same product and learn the algorithm. They have to
write their own algorithms and implementations. If no one in the group is agood cryptographer, then
they won’t know if they have a secure algorithm.

Despite these major drawbacks, restricted algorithms are enormously popular for low-security
applications. Users either don’t realize or don’t care about the security problems inherent in their
system.

Modern cryptography solves this problem with akey, denoted by K. This key might be any one of a
large number of values. The range of possible values of the key is called the keyspace. Both the
encryption and decryption operations use this key (i.e., they are dependent on the key and thisfact is
denoted by the k subscript), so the functions now become:

E.(M)=C
D (C) =M

Those functions have the property that (see Figure 1.2):

DK(EK(M)) =M

Some algorithms use a different encryption key and decryption key (see Figure 1.3). That is, the
encryption key, K, is different from the corresponding decryption key, K. In this case:

EKl(M) =C

DKZ(C) =M

DKz(EKl (M) =M
All of the security in these algorithms is based in the key (or keys); none is based in the details of the
algorithm. This means that the algorithm can be published and analyzed. Products using the

algorithm can be mass-produced. It doesn’t matter if an eavesdropper knows your algorithm; if she
doesn’t know your particular key, she can’t read your messages.

Key Koy
i Tetinganad
Fzin 19*1 :..: h J s ﬁ}gp@ng i : BEaEnh e
................. t bﬂ'— |...._...._._......-.L Ijﬁcwﬂtlr E-“"“"“_""

Figure 1.2 Encryption and decryption with a key.

En=rystion gyt
£y Hazy

Fzrinzre: -—;——i Cipriretest —
............ i . E werpliae: !.._...__......_._,! et rera

Figure 1.3 Encryption and decryptl on with two different keys.
A cryptosystem is an algorithm, plus al possible plaintexts, ciphertexts, and keys.
Symmetric Algorithms

There are two general types of key-based algorithms: symmetric and public-key. Symmetric
algorithms, sometimes called conventional algorithms, are algorithms where the encryption key can
be calculated from the decryption key and vice versa. In most symmetric algorithms, the encryption
key and the decryption key are the same. These algorithms, also called secret-key algorithms, single-
key algorithms, or one-key algorithms, require that the sender and receiver agree on akey before
they can communicate securely. The security of a symmetric algorithm rests in the key; divulging the
key means that anyone could encrypt and decrypt messages. As long as the communication needs to
remain secret, the key must remain secret.

Encryption and decryption with a symmetric algorithm are denoted by:

E.(M)=C
D (C) =M

Symmetric algorithms can be divided into two categories. Some operate on the plaintext asingle bit
(or sometimes byte) at atime; these are called stream algorithms or stream ciphers. Others operate
on the plaintext in groups of bits. The groups of bits are called blocks, and the algorithms are called
block algorithms or block ciphers. For modern computer algorithms, atypical block size is 64
bits—large enough to preclude analysis and small enough to be workable. (Before computers,
algorithms generally operated on plaintext one character at atime. Y ou can think of this as a stream
algorithm operating on a stream of characters.)

Public-Key Algorithms

Public-key algorithms (also called asymmetric algorithms) are designed so that the key used for
encryption is different from the key used for decryption. Furthermore, the decryption key cannot (at
least in any reasonable amount of time) be calculated from the encryption key. The algorithms are

called "public-key" because the encryption key can be made public: A complete stranger can use the
encryption key to encrypt a message, but only a specific person with the corresponding decryption
key can decrypt the message. In these systems, the encryption key is often called the public key, and
the decryption key is often called the private key. The private key is sometimes also called the
secret key, but to avoid confusion with symmetric algorithms, that tag won't be used here.

Encryption using public key K is denoted by:

E.(M)=C

Even though the public key and private key are different, decryption with the corresponding private
key is denoted by:

D (C) =M

Sometimes, messages will be encrypted with the private key and decrypted with the public key; this
isused in digital signatures (see Section 2.6). Despite the possible confusion, these operations are
denoted by, respectively:

E.(M)=C
D (C) =M

Cryptanalysis

The whole point of cryptography isto keep the plaintext (or the key, or both) secret from
eavesdroppers (also called adversaries, attackers, interceptors, interlopers, intruders, opponents, or
simply the enemy). Eavesdroppers are assumed to have complete access to the communications
between the sender and receiver.

Cryptanalysisis the science of recovering the plaintext of a message without access to the key.
Successful cryptanalysis may recover the plaintext or the key. It also may find weaknessesin a
cryptosystem that eventually lead to the previous results. (The loss of a key through noncryptanalytic
meansis called acompromise.)

An attempted cryptanalysisis called an attack. A fundamental assumption in cryptanalysis, first
enunciated by the Dutchman A. Kerckhoffs in the nineteenth century, is that the secrecy must reside
entirely in the key [794]. Kerckhoffs assumes that the cryptanalyst has compl ete details of the
cryptographic algorithm and implementation. (Of course, one would assume that the CIA does not
make a habit of telling Mossad about its cryptographic algorithms, but Mossad probably finds out
anyway.) While real-world cryptanalysts don’'t always have such detailed information, it's a good
assumption to make. If others can’t break an algorithm, even with knowledge of how it works, then
they certainly won't be able to break it without that knowledge.

There are four general types of cryptanalytic attacks. Of course, each of them assumes that the
cryptanalyst has complete knowledge of the encryption algorithm used:

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of severa messages, all of
which have been encrypted using the same encryption algorithm. The cryptanalyst’sjob isto
recover the plaintext of as many messages as possible, or better yet to deduce the key (or keys)
used to encrypt the messages, in order to decrypt other messages encrypted with the same
keys.

Given: C, = E, (P,), C, = E (P,),...C, = E/(P)

Deduce: Either P, P,,...P;; k; or an algorithmtoinfer P, , fromC,,; = E (P,, 1)
2. Known-plaintext attack. The cryptanalyst has access not only to the ciphertext of several
messages, but also to the plaintext of those messages. His job is to deduce the key (or keys)
used to encrypt the messages or an algorithm to decrypt any new messages encrypted with the
same key (or keys).

Given: P, C; = E (P,), P,, C, = E|(P,),..P;, C; = E(P)

Deduce: Either k, or an algorithmtoinfer P, , fromC,, ; = E (P, ;)

3. Chosen-plaintext attack. The cryptanalyst not only has access to the ciphertext and
associated plaintext for several messages, but he also chooses the plaintext that gets
encrypted. Thisis more powerful than a known-plaintext attack, because the cryptanalyst can
choose specific plaintext blocks to encrypt, ones that might yield more information about the
key. Hisjob isto deduce the key (or keys) used to encrypt the messages or an algorithmto
decrypt any new messages encrypted with the same key (or keys).

Given: P,, C; = B (P,), P,, C, = E|(P,),...P;, C; = E,(P;), where the cryptanalyst gets

to choose Pl, P2,...Pi

Deduce: Either k, or an algorithmtoinfer P, , fromC,, = E,(P,,4)

4. Adaptive-chosen-plaintext attack. Thisisaspecia case of achosen-plaintext attack. Not
only can the cryptanalyst choose the plaintext that is encrypted, but he can also modify his
choice based on the results of previous encryption. In a chosen-plaintext attack, a cryptanalyst
might just be able to choose one large block of plaintext to be encrypted; in an adaptive-
chosen-plaintext attack he can choose a smaller block of plaintext and then choose another
based on the results of the first, and so forth.

There are at least three other types of cryptanalytic attack.

5. Chosen-ciphertext attack. The cryptanalyst can choose different ciphertextsto be
decrypted and has access to the decrypted plaintext. For example, the cryptanalyst has access
to atamperproof box that does automatic decryption. His job isto deduce the key.

Given: C;, P, =D, (C,), C,, P, =D (C,),...C;, P, = D, (C)

Deduce: k

This attack is primarily applicable to public-key algorithms and will be discussed in Section
19.3. A chosen-ciphertext attack is sometimes effective against a symmetric algorithm as well.
(Sometimes a chosen-plaintext attack and a chosen-ciphertext attack are together known as a
chosen-text attack.)

6. Chosen-key attack. This attack doesn’t mean that the cryptanalyst can choose the key; it
means that he has some knowledge about the relationship between different keys. It’s strange
and obscure, not very practical, and discussed in Section 12.4.

7. Rubber-hose cryptanalysis. The cryptanalyst threatens, blackmails, or tortures someone
until they give him the key. Bribery is sometimes referred to as a pur chase-key attack. These
are all very powerful attacks and often the best way to break an algorithm.

Known-plaintext attacks and chosen-plaintext attacks are more common than you might think. It is
not unheard-of for a cryptanalyst to get a plaintext message that has been encrypted or to bribe
someone to encrypt a chosen message. Y ou may not even have to bribe someone; if you give a
message to an ambassador, you will probably find that it gets encrypted and sent back to his country
for consideration. Many messages have standard beginnings and endings that might be known to the
cryptanalyst. Encrypted source code is especially vulnerable because of the regular appearance of
keywords: #define, struct, else, return. Encrypted executable code has the same kinds of problems:
functions, loop structures, and so on. Known-plaintext attacks (and even chosen-plaintext attacks)
were successfully used against both the Germans and the Japanese during World War 1. David
Kahn’' s books [794,795,796] have historical examples of these kinds of attacks.

And don't forget Kerckhoffs' s assumption: If the strength of your new cryptosystem relies on the
fact that the attacker does not know the algorithm’ s inner workings, you' re sunk. If you believe that
keeping the algorithm’ s insides secret improves the security of your cryptosystem more than letting
the academic community analyze it, you' re wrong. And if you think that someone won’t disassemble
your code and reverse-engineer your algorithm, you're naive. (In 1994 this happened with the RC4
algorithm—see Section 17.1.) The best algorithms we have are the ones that have been made public,
have been attacked by the world’' s best cryptographers for years, and are still unbreakable. (The
Nationa Security Agency keeps their algorithms secret from outsiders, but they have the best
cryptographers in the world working within their walls—you don’t. Additionally, they discuss their
algorithms with one another, relying on peer review to uncover any weaknesses in their work.)

Cryptanalysts don’t always have access to the algorithms, as when the United States broke the
Japanese diplomatic code PURPLE during World War 11 [794]—but they often do. If the algorithm
isbeing used in acommercial security program, it is simply a matter of time and money to
disassemble the program and recover the algorithm. If the algorithm is being used in amilitary
communications system, it is simply a matter of time and money to buy (or steal) the equipment and
reverse-engineer the algorithm.

Those who claim to have an unbreakable cipher simply because they can’t break it are either
geniuses or fools. Unfortunately, there are more of the latter in the world. Beware of people who
extol the virtues of their agorithms, but refuse to make them public; trusting their algorithmsislike
trusting snake oil.

Good cryptographers rely on peer review to separate the good algorithms from the bad.
Security of Algorithms

Different algorithms offer different degrees of security; it depends on how hard they are to break. If
the cost required to break an algorithm is greater than the value of the encrypted data, then you're
probably safe. If the time required to break an agorithm is longer than the time the encrypted data
must remain secret, then you' re probably safe. If the amount of data encrypted with asingle key is
less than the amount of data necessary to break the algorithm, then you’ re probably safe.

| say "probably” because there is always a chance of new breakthroughsin cryptanaysis. On the
other hand, the value of most data decreases over time. It isimportant that the value of the data
always remain less than the cost to break the security protecting it.

Lars Knudsen classified these different categories of breaking an algorithm. In decreasing order of
severity [858]:

1. Total break. A cryptanalyst finds the key, K, such that D, (C) = P.
2. Global deduction. A cryptanalyst finds an alternate algorithm, A, equivalent to D, (C),

without knowing K.

3. Instance (or local) deduction. A cryptanalyst finds the plaintext of an intercepted
ciphertext.

4. Information deduction. A cryptanalyst gains some information about the key or plaintext.
Thisinformation could be afew bits of the key, some information about the form of the
plaintext, and so forth.

An agorithm is unconditionally secureif, no matter how much ciphertext a cryptanalyst has, there
is not enough information to recover the plaintext. In point of fact, only a one-time pad (see Section
1.5) is unbreakable given infinite resources. All other cryptosystems are breakable in a ciphertext-
only attack, smply by trying every possible key one by one and checking whether the resulting

plaintext is meaningful. Thisis called a brute-for ce attack (see Section 7.1).

Cryptography is more concerned with cryptosystems that are computationally infeasible to break. An
algorithm is considered computationally secur e (sometimes called strong) if it cannot be broken
with available resources, either current or future. Exactly what constitutes "available resources’ is
open to interpretation.

Y ou can measure the complexity (see Section 11.1) of an attack in different ways:

1. Data complexity. The amount of data needed as input to the attack.

2. Processing complexity. The time needed to perform the attack. Thisis often called the
work factor.

3. Storage requirements. The amount of memory needed to do the attack.

Asarule of thumb, the complexity of an attack is taken to be the minimum of these three factors.
Some attacks involve trading off the three complexities: A faster attack might be possible at the
expense of agreater storage requirement.

Complexities are expressed as orders of magnitude. If an algorithm has a processing complexity of

2128 then 2128 operations are required to break the algorithm. (These operations may be complex
and time-consuming.) Still, if you assume that you have enough computing speed to perform a
million operations every second and you set amillion parallel processors against the task, it will still

take over 101° years to recover the key. That’s a billion times the age of the universe.

While the complexity of an attack is constant (until some cryptanalyst finds a better attack, of
course), computing power is anything but. There have been phenomenal advances in computing
power during the last half-century and there is no reason to think this trend won't continue. Many
cryptanalytic attacks are perfect for parallel machines: The task can be broken down into billions of
tiny pieces and none of the processors need to interact with each other. Pronouncing an agorithm
secure simply because it isinfeasible to break, given current technology, is dicey at best. Good
cryptosystems are designed to be infeasible to break with the computing power that is expected to
evolve many yearsin the future.

Historical Terms

Historically, a code refers to a cryptosystem that deals with linguistic units: words, phrases,
sentences, and so forth. For example, the word "OCELOT" might be the ciphertext for the entire
phrase "TURN LEFT 90 DEGREES," the word "LOLLIPOP" might be the ciphertext for "TURN
RIGHT 90 DEGREES," and the words "BENT EAR" might be the ciphertext for "HOWITZER."
Codes of thistype are not discussed in this book; see [794,795]. Codes are only useful for
specialized circumstances. Ciphers are useful for any circumstance. If your code has no entry for
"ANTEATERS," then you can’t say it. You can say anything with a cipher.

1.2 Steganogr aphy

Steganography serves to hide secret messages in other messages, such that the secret’ s very
existence is concealed. Generally the sender writes an innocuous message and then conceals a secret
message on the same piece of paper. Historical tricks include invisible inks, tiny pin punctures on
selected characters, minute differences between handwritten characters, pencil marks on typewritten
characters, grilles which cover most of the message except for afew characters, and so on.

More recently, people are hiding secret messages in graphic images. Replace the least significant bit
of each byte of the image with the bits of the message. The graphical image won'’t change

appreciably—most graphics standards specify more gradations of color than the human eye can
notice—and the message can be stripped out at the receiving end. Y ou can store a 64-kilobyte
message in a 1024 x 1024 grey-scale picture thisway. Several public-domain programs do this sort
of thing.

Peter Wayner’s mimic functions obfuscate messages. These functions modify a message so that its
statistical profile resembles that of something else: the classifieds section of The New York Times, a
play by Shakespeare, or a newsgroup on the Internet [1584,1585]. This type of steganography won't
fool a person, but it might fool some big computers scanning the Internet for interesting messages.

1.3 Substitution Ciphersand Transposition Ciphers

Before computers, cryptography consisted of character-based algorithms. Different cryptographic
algorithms either substituted characters for one another or transposed characters with one another.
The better algorithms did both, many times each.

Things are more complex these days, but the philosophy remains the same. The primary changeis
that algorithms work on bitsinstead of characters. Thisis actually just a change in the alphabet size:
from 26 elements to two elements. Most good cryptographic algorithms still combine elements of
substitution and transposition.

Substitution Ciphers

A substitution cipher is onein which each character in the plaintext is substituted for another
character in the ciphertext. The receiver inverts the substitution on the ciphertext to recover the
plaintext.

In classical cryptography, there are four types of substitution ciphers:

— A simple substitution cipher, or monoalphabetic cipher, is one in which each character
of the plaintext is replaced with a corresponding character of ciphertext. The cryptogramsin
newspapers are simple substitution ciphers.

— A homophonic substitution cipher islike a simple substitution cryptosystem, except a
single character of plaintext can map to one of several characters of ciphertext. For example,
"A" could correspond to either 5, 13, 25, or 56, "B" could correspond to either 7, 19, 31, or 42,
and so on.

— A polygram substitution cipher isonein which blocks of characters are encrypted in
groups. For example, "ABA" could correspond to "RTQ," "ABB" could correspond to "SLL,"
and so on.

— A polyalphabetic substitution cipher is made up of multiple simple substitution ciphers.
For example, there might be five different ssmple substitution ciphers used; the particular one
used changes with the position of each character of the plaintext.

The famous Caesar Cipher, in which each plaintext character is replaced by the character three to
the right modulo 26 ("A" isreplaced by "D," "B" isreplaced by "E,"..., "W" isreplaced by "Z," " X"
isreplaced by "A," "Y" isreplaced by "B," and "Z" isreplaced by "C") is a simple substitution
cipher. It's actually even simpler, because the ciphertext alphabet is arotation of the plaintext
alphabet and not an arbitrary permutation.

ROT13 isasimple encryption program commonly found on UNIX systems; itisaso asimple
substitution cipher. In this cipher, "A" isreplaced by "N," "B" isreplaced by "O," and so on. Every
letter isrotated 13 places.

Encrypting afile twice with ROT13 restores the original file.

P = ROT13 (ROT13 (P))

ROT13 isnot intended for security; it is often used in Usenet posts to hide potentially offensive text,
to avoid giving away the solution to a puzzle, and so forth.

Simple substitution ciphers can be easily broken because the cipher does not hide the underlying
frequencies of the different letters of the plaintext. All it takesis about 25 English characters before a
good cryptanalyst can reconstruct the plaintext [1434]. An agorithm for solving these sorts of
ciphers can be found in [578,587,1600,78,1475,1236,880]. A good computer algorithm is[703].

Homophonic substitution ciphers were used as early as 1401 by the Duchy of Mantua[794]. They
are much more complicated to break than simple substitution ciphers, but still do not obscure all of
the statistical properties of the plaintext language. With a known-plaintext attack, the ciphers are
trivial to break. A ciphertext-only attack is harder, but only takes a few seconds on a computer.
Detallsarein [1261].

Polygram substitution ciphers are ciphers in which groups of |etters are encrypted together. The
Playfair cipher, invented in 1854, was used by the British during World War | [794]. It encrypts pairs
of letterstogether. Its cryptanalysisis discussed in [587,1475,880]. The Hill cipher is another
example of a polygram substitution cipher [732]. Sometimes you see Huffman coding used as a
cipher; thisis an insecure polygram substitution cipher.

Polyal phabetic substitution ciphers were invented by Leon Battistain 1568 [794]. They were used by
the Union army during the American Civil War. Despite the fact that they can be broken easily
[819,577,587,794] (especially with the help of computers), many commercial computer security
products use ciphers of thisform [1387,1390,1502]. (Details on how to break this encryption
scheme, as used in WordPerfect, can be found in [135,139].) The Vigenére cipher, first published in
1586, and the Beaufort cipher are also examples of polyal phabetic substitution ciphers.

Polyal phabetic substitution ciphers have multiple one-letter keys, each of which is used to encrypt
one letter of the plaintext. The first key encrypts the first letter of the plaintext, the second key
encrypts the second letter of the plaintext, and so on. After all the keys are used, the keys are
recycled. If there were 20 one-letter keys, then every twentieth letter would be encrypted with the
same key. Thisis called the period of the cipher. In classical cryptography, ciphers with longer
periods were significantly harder to break than ciphers with short periods. There are computer
techniques that can easily break substitution ciphers with very long periods.

A running-key cipher—sometimes called a book cipher—in which one text is used to encrypt
another text, is another example of this sort of cipher. Even though this cipher has a period the length
of thetext, it can also be broken easily [576,794].

Transposition Ciphers

In atransposition cipher the plaintext remains the same, but the order of charactersis shuffled
around. In asimple columnar transposition cipher, the plaintext iswritten horizontally onto a
piece of graph paper of fixed width and the ciphertext is read off vertically (see Figure 1.4).
Decryption is amatter of writing the ciphertext vertically onto a piece of graph paper of identical
width and then reading the plaintext off horizontally.

Cryptanalysis of these ciphersis discussed in [587,1475]. Since the letters of the ciphertext are the
same as those of the plaintext, a frequency analysis on the ciphertext would reveal that each letter
has approximately the same likelihood as in English. This gives avery good clue to a cryptanalyst,
who can then use avariety of techniques to determine the right ordering of the letters to obtain the
plaintext. Putting the ciphertext through a second transposition cipher greatly enhances security.

There are even more complicated transposition ciphers, but computers can break amost all of them.

The German ADFGV X cipher, used during World War [, is a transposition cipher combined with a
simple substitution. It was a very complex algorithm for its day but was broken by Georges Painvin,
a French cryptanalyst [794].

Although many modern algorithms use transposition, it is troublesome because it requires alot of
memory and sometimes requires messages to be only certain lengths. Substitution is far more
common.

Rotor Machines

In the 1920s, various mechanical encryption devices were invented to automate the process of
encryption. Most were based on the concept of arotor, a mechanical wheel wired to perform a
general substitution.

A rotor machine has akeyboard and a series of rotors, and implements a version of the Vigenére
cipher. Each rotor is an arbitrary permutation of the alphabet, has 26 positions, and performs a
simple substitution. For example, arotor might be wired to substitute "F" for "A," "U" for "B," "L"
for "C," and so on. And the output pins of one rotor are connected to the input pins of the next.

FRIRbERE Lt T N Azl ey RS S0 IR ATLEART IS ERAERE

GEHEF‘:‘E‘K!T CAER P OFRFZ A 02 S50 05 T T T Y WA TR AT G VARRE T

Figure 1.4 Columnar transposition cipher.

For example, in a 4-rotor machine the first rotor might substitute "F" for "A," the second might
substitute "Y" for "F," the third might substitute "E" for "Y," and the fourth might substitute "C" for
"E"; "C" would be the output ciphertext. Then some of the rotors shift, so next time the substitutions
will be different.

It is the combination of several rotors and the gears moving them that makes the machine secure.

Because the rotors all move at different rates, the period for an n-rotor machine is 26". Some rotor
machines can also have a different number of positions on each rotor, further frustrating
cryptanalysis.

The best-known rotor device is the Enigma. The Enigmawas used by the Germans during World
War II. Theideawas invented by Arthur Scherbius and Arvid Gerhard Damm in Europe. It was
patented in the United States by Arthur Scherbius [1383]. The Germans beefed up the basic design
considerably for wartime use.

The German Enigma had three rotors, chosen from a set of five, a plugboard that slightly permuted
the plaintext, and areflecting rotor that caused each rotor to operate on each plaintext letter twice. As
complicated as the Enigmawas, it was broken during World War 11. First, ateam of Polish
cryptographers broke the German Enigma and explained their attack to the British. The Germans
modified their Enigma as the war progressed, and the British continued to cryptanalyze the new
versions. For explanations of how rotor ciphers work and how they were broken, see
[794,86,448,498,446,880,1315,1587,690]. Two fascinating accounts of how the Enigmawas broken
are[735,796].

Further Reading

Thisis not abook about classical cryptography, so | will not dwell further on these subjects. Two
excellent precomputer cryptology books are [587,1475]; [448] presents some modern cryptanalysis
of cipher machines. Dorothy Denning discusses many of these ciphersin [456] and [880] has some
fairly complex mathematical analysis of the same ciphers. Another older cryptography text, which
discusses analog cryptography, is[99]. An article that presents a good overview of the subject is
[579]. David Kahn's historical cryptography books are also excellent [794,795,796].

1.4 Simple XOR

XOR isexclusive-or operation: ‘' in C or [in mathematical notation. It's a standard operation on
bits:

o0o=o0
od1=1
100=1
101=0

Also note that:

alla=0
albOb=a

The simple-X OR algorithm isreally an embarrassment; it’s nothing more than a Vigenere

polyal phabetic cipher. It's here only because of its prevalence in commercial software packages, at
least those in the MS-DOS and Macintosh worlds [1502,1387]. Unfortunately, if a software security
program proclaims that it has a "proprietary” encryption algorithm—significantly faster than DES—
the odds are that it is some variant of this.

/* Usage: crypto key input _file output file */
void main (int argc, char *argv[])

{
FILE *fi, *fo;
char *cp
int c;

if ((cp = argv[l]) && *cp!="\0") {
if ((fi = fopen(argv[2], "rb")) !'= NULL) {
if ((fo = fopen(argv[3], "wb")) !'= NULL) {
while ((c = getc(fi)) !'= EOF) {
if (!*cp) cp = argv[1];
c "= *(cptt);
putc(c, fo);

fclose(fo);

fclose(fi);

}

Thisisasymmetric algorithm. The plaintext is being XORed with a keyword to generate the
ciphertext. Since XORing the same value twice restores the original, encryption and decryption use
exactly the same program:

POK=C
CUK=P

There’ sno real security here. Thiskind of encryption istrivial to break, even without computers
[587,1475]. It will only take afew seconds with a computer.

Assume the plaintext is English. Furthermore, assume the key length is any small number of bytes.
Here' s how to break it:

1. Discover the length of the key by a procedure known as counting coincidences [577].
XOR the ciphertext against itself shifted various numbers of bytes, and count those bytes that
are equal. If the displacement is a multiple of the key length, then something over 6 percent of
the bytes will be equal. If it is not, then less than 0.4 percent will be equal (assuming arandom
key encrypting normal ASCII text; other plaintext will have different numbers). Thisis called
the index of coincidence. The smallest displacement that indicates a multiple of the key length
isthe length of the key.

2. Shift the ciphertext by that length and XOR it with itself. This removes the key and leaves
you with plaintext XORed with the plaintext shifted the length of the key. Since English has
1.3 bits of real information per byte (see Section 11.1), there is plenty of redundancy for
determining a unigue decryption.

Despite this, the list of software vendors that tout this toy algorithm as being "amost as secure as
DES' is staggering [1387]. It is the algorithm (with a 160-bit repeated "key") that the NSA finally
allowed the U.S. digital cellular phone industry to use for voice privacy. An XOR might keep your
kid sister from reading your files, but it won't stop a cryptanalyst for more than afew minutes.

1.5 One-Time Pads

Believeit or not, there is a perfect encryption scheme. It’s called a one-time pad, and was invented
in 1917 by Major Joseph Mauborgne and AT& T’ s Gilbert Vernam [794]. (Actually, a one-time pad
isaspecial case of athreshold scheme; see Section 3.7.) Classically, a one-time pad is nothing more
than alarge nonrepeating set of truly random key letters, written on sheets of paper, and glued
together in apad. Initsoriginal form, it was a one-time tape for teletypewriters. The sender uses
each key letter on the pad to encrypt exactly one plaintext character. Encryption is the addition
modulo 26 of the plaintext character and the one-time pad key character.

Each key letter is used exactly once, for only one message. The sender encrypts the message and
then destroys the used pages of the pad or used section of the tape. The receiver has an identical pad
and uses each key on the pad, in turn, to decrypt each letter of the ciphertext. The receiver destroys
the same pad pages or tape section after decrypting the message. New message—new key |etters. For
example, if the messageis.

ONETI MEPAD

and the key sequence from the pad is

TBFRGFARFM

then the ciphertext is

| PKLPSFHGQ

because

O+Tmod26=1
N+Bmod26=P
E+ Fmod 26 =K
etc.

Assuming an eavesdropper can't get access to the one-time pad used to encrypt the message, this
scheme is perfectly secure. A given ciphertext message is equally likely to correspond to any
possible plaintext message of equal size.

Since every key sequence is equally likely (remember, the key letters are generated randomly), an
adversary has no information with which to cryptanalyze the ciphertext. The key sequence could just
aslikely be:

POYYAEAAZX

which would decrypt to:

SALMONEGGS

or

BXFGBMIMXM

which would decrypt to:

GREENFLUI D

This point bears repeating: Since every plaintext message is equally possible, there is no way for the
cryptanalyst to determine which plaintext message is the correct one. A random key sequence added
to anonrandom plaintext message produces a completely random ciphertext message and no amount
of computing power can change that.

The caveat, and thisis abig one, isthat the key letters have to be generated randomly. Any attacks
against this scheme will be against the method used to generate the key letters. Using a pseudo-
random number generator doesn’t count; they always have nonrandom properties. If you use areal
random source—this is much harder than it might first appear, see Section 17.14—it’s secure.

The other important point is that you can never use the key sequence again, ever. Evenif you use a
multiple-gigabyte pad, if a cryptanalyst has multiple ciphertexts whose keys overlap, he can
reconstruct the plaintext. He slides each pair of ciphertexts against each other and counts the number
of matches at each position. If they are aligned right, the proportion of matches jumps suddenly—the
exact percentages depend on the plaintext language. From this point cryptanalysisis easy. It'slike
the index of coincidence, but with just two "periods’ to compare [904]. Don't do it.

The idea of a one-time pad can be easily extended to binary data. Instead of a one-time pad
consisting of letters, use a one-time pad of bits. Instead of adding the plaintext to the one-time pad,
use an XOR. To decrypt, XOR the ciphertext with the same one-time pad. Everything else remains
the same and the security isjust as perfect.

This al sounds good, but there are afew problems. Since the key bits must be random and can never
be used again, the length of the key sequence must be equal to the length of the message. A one-time
pad might be suitable for afew short messages, but it will never work for a 1.544 Mbps
communications channel. Y ou can store 650 megabytes worth of random bits on a CD-ROM, but
there are problems. First, you want exactly two copies of the random bits, but CD-ROMs are

economical only for large quantities. And second, you want to be able to destroy the bits already
used. CD-ROM has no erase facilities except for physically destroying the entire disk. Digital tapeis
amuch better medium for this sort of thing.

Even if you solve the key distribution and storage problem, you have to make sure the sender and
receiver are perfectly synchronized. If the receiver is off by abit (or if some bits are dropped during
the transmission), the message won't make any sense. On the other hand, if some bits are altered
during transmission (without any bits being added or removed—something far more likely to happen
due to random noise), only those bits will be decrypted incorrectly. But on the other hand, a one-time
pad provides no authenticity.

One-time pads have applicationsin today’ s world, primarily for ultra-secure low-bandwidth
channels. The hotline between the United States and the former Soviet Union was (isit still active?)
rumored to be encrypted with a one-time pad. Many Soviet spy messages to agents were encrypted
using one-time pads. These messages are still secure today and will remain that way forever. It
doesn’t matter how long the supercomputers work on the problem. Even after the aliens from
Andromeda land with their massive spaceships and undreamed-of computing power, they will not be
able to read the Soviet spy messages encrypted with one-time pads (unless they can also go back in
time and get the one-time pads).

1.6 Computer Algorithms
There are many cryptographic algorithms. These are three of the most common:

— DES (Data Encryption Standard) is the most popular computer encryption agorithm. DES
isaU.S. and international standard. It is a symmetric algorithm; the same key is used for
encryption and decryption.

— RSA (named for its creators—Rivest, Shamir, and Adleman) is the most popular public-key
algorithm. It can be used for both encryption and digital signatures.

— DSA (Digital Signature Algorithm, used as part of the Digital Signature Standard) is
another public-key algorithm. It cannot be used for encryption, but only for digital signatures.

These are the kinds of stuff this book is about.

1.7 Large Numbers

Throughout this book, | use various large numbers to describe different things in cryptography.
Becauseit is so easy to lose sight of these numbers and what they signify, Table 1.1 gives physical

analogues for some of them.

These numbers are order-of-magnitude estimates, and have been culled from avariety of sources.
Many of the astrophysics numbers are explained in Freeman

TABLE 1.1
Large Numbers
Physical Analogue Number
Odds of being killed by lightning (per day) 1in 9 hillion (233
Odds of winning thetop prizein aU.S. state |ottery 1 in 4,000,000 (222

Odds of winning the top prizein aU.S. state lottery and 1in2°°
being killed by lightning in the same day

Odds of drowning (in the U.S. per year)

Odds of being killed in an automobile accident(in the U.S.

in 1093)

Odds of being killed in an automobile accident(in the U.S.

per lifetime)

Time until the next ice age

Time until the sun goes nova

Age of the planet

Age of the Universe

Number of atoms in the planet

Number of atomsin the sun

Number of atoms in the galaxy

Number of atomsin the Universe (dark matter excluded)
Volume of the Universe

If the Universeis Closed:
Totdl lifetime of the Universe

If the Universeis Open:
Time until low-mass stars cool off

Time until planets detach from stars

Time until stars detach from galaxies

Time until orbits decay by gravitational radiation
Time until black holes decay by the Hawking process
Time until al matter isliquid at zero temperature
Time until al matter decaysto iron

Time until al matter collapses to black holes

1in 59,000 (216)
1in 6100 (213)

1in 88 (29

14,000 (21%) years
10° (230) years
102 (29 years
1010 (234 years
1051 (2179)

1057 (2190)

1067 (2223)

1077 (2265)

10%4 (2280 cm?®

1011 (237) years
1018 (261 seconds

10 (2%7) years
101> (2%0) years
1012 (254 years
1020 (257) years
10% (2213) years
1055 (2216) years

101026 yeys

101076 years

Dyson'’s paper, "Time Without End: Physics and Biology in an Open Universe,” in Reviews of
Modern Physics, v. 52, n. 3, July 1979, pp. 447-460. Automobile accident deaths are calculated from
the Department of Transportation’s statistic of 163 deaths per million people in 1993 and an average
lifespan of 69.7 years.

Part |
Cryptographic protocols

Chapter 2
Protocol Building Blocks

2.1 Introduction to Protocols

The whole point of cryptography isto solve problems. (Actualy, that’s the whole point of
computers—something many people tend to forget.) Cryptography solves problems that involve
secrecy, authentication, integrity, and dishonest people. Y ou can learn al about cryptographic
algorithms and techniques, but these are academic unless they can solve a problem. Thisiswhy we
are going to look at protocolsfirst.

A protocol isaseries of steps, involving two or more parties, designed to accomplish atask. Thisis
an important definition. A "series of steps’ means that the protocol has a sequence, from start to
finish. Every step must be executed in turn, and no step can be taken before the previous step is
finished. "Involving two or more parties’ means that at |east two people are required to complete the
protocol; one person alone does not make a protocol. A person alone can perform a series of stepsto
accomplish atask (like baking a cake), but thisis not a protocol. (Someone else must eat the cake to
make it a protocol.) Finally, "designed to accomplish atask™ means that the protocol must achieve
something. Something that looks like a protocol but does not accomplish atask is not a protocol—
it'sawaste of time.

Protocols have other characteristics aswell:

— Everyone involved in the protocol must know the protocol and all of the stepsto follow in
advance.

— Everyoneinvolved in the protocol must agree to follow it.

— The protocol must be unambiguous; each step must be well defined and there must be no
chance of a misunderstanding.

— The protocol must be complete; there must be a specified action for every possible
situation.

The protocolsin this book are organized as a series of steps. Execution of the protocol proceeds
linearly through the steps, unless there are instructions to branch to another step. Each step involves
at least one of two things: computations by one or more of the parties, or messages sent among the
parties.

A cryptographic protocol is aprotocol that uses cryptography. The parties can be friends and trust
each other implicitly or they can be adversaries and not trust one another to give the correct time of
day. A cryptographic protocol involves some cryptographic algorithm, but generally the goal of the
protocol is something beyond simple secrecy. The parties participating in the protocol might want to
share parts of their secrets to compute a value, jointly generate a random sequence, convince one
another of their identity, or simultaneously sign a contract. The whole point of using cryptography in
aprotocol isto prevent or detect eavesdropping and cheating. If you have never seen these protocols
before, they will radically change your ideas of what mutually distrustful parties can accomplish
over acomputer network. In general, this can be stated as:

— It should not be possible to do more or learn more than what is specified in the protocol.

Thisisalot harder than it looks. In the next few chapters | discuss alot of protocols. In some of
them it is possible for one of the participants to cheat the other. In others, it is possible for an
eavesdropper to subvert the protocol or learn secret information. Some protocols fail because the
designers weren’t thorough enough in their requirements definitions. Others fail because their
designers weren’t thorough enough in their analysis. Like algorithms, it is much easier to prove

insecurity than it isto prove security.
The Purpose of Protocols

In daily life, there are informal protocols for almost everything: ordering goods over the telephone,
playing poker, voting in an election. No one thinks much about these protocols; they have evolved
over time, everyone knows how to use them, and they work reasonably well.

These days, more and more human interaction takes place over computer networks instead of face-
to-face. Computers need formal protocols to do the same things that people do without thinking. If
you moved from one state to another and found a voting booth that looked completely different from
the ones you were used to, you could easily adapt. Computers are not nearly so flexible.

Many face-to-face protocols rely on peopl€e' s presence to ensure fairness and security. Would you
send a stranger a pile of cash to buy groceries for you? Would you play poker with someone if you
couldn’t see him shuffle and deal”? Would you mail the government your secret ballot without some
assurance of anonymity?

It is naive to assume that people on computer networks are honest. It is naive to assume that the
managers of computer networks are honest. It is even naive to assume that the designers of computer
networks are honest. Most are, but the dishonest few can do alot of damage. By formalizing
protocols, we can examine ways in which dishonest parties can subvert them. Then we can develop
protocols that are immune to that subversion.

In addition to formalizing behavior, protocols abstract the process of accomplishing atask from the
mechanism by which the task is accomplished. A communications protocol is the same whether
implemented on PCs or VAXs. We can examine the protocol without getting bogged down in the
implementation details. When we are convinced we have a good protocol, we can implement it in
everything from computers to telephones to intelligent muffin toasters.

The Players

To help demonstrate protocols, | have enlisted the aid of several people (see Table 2.1). Alice and
Bob are thefirst two. They will perform all general two-person protocols. Asarule, Alice will
initiate al protocols and Bob will respond. If the protocol requires athird or fourth person, Carol and
Dave will perform those roles. Other actorswill play specialized supporting roles; they will be
introduced later.

Arbitrated Protocols

An arbitrator isadisinterested third party trusted to complete a protocol (see Figure 2.1a).
Disinterested means that the arbitrator has no vested interest in the protocol and no particul ar
allegiance to any of the partiesinvolved. Trusted means that all people involved in the protocol
accept what he says as true, what he does as correct, and that he will complete his part of the
protocol. Arbitrators can help complete protocols between two mutually distrustful parties.

In the real world, lawyers are often used as arbitrators. For example, Aliceis selling acar to Bob, a
stranger. Bob wants to pay by check, but Alice has no way of knowing if the check is good. Alice
wants the check to clear before she turns the title over to Bob. Bob, who doesn’t trust Alice any more
than she trusts him, doesn’t want to hand over a check without receiving atitle.

TABLE 2.1
Dramatis Per sonae

Alice First participant in all the protocols

Bob Second participant in al the protocols
Carol Participant in the three- and four-party protocols
Dave Participant in the four-party protocols
Eve Eavesdropper
Mallory Malicious active attacker
Trent Trusted arbitrator
Walter Warden; he'll be guarding Alice and Bob in some protocols
Pegay Prover
Victor Verifier
Trend

[EREE g R

Bokr Trant

S B O s v
P % g
P i o

Fod R e i el

Figure 2.1 Types of protocols.

Enter alawyer trusted by both. With his help, Alice and Bob can use the following protocol to ensure
that neither cheats the other:

(1) Alicegivesthetitleto the lawyer.

(2) Bob givesthe check to Alice.

(3) Alice deposits the check.

(4) After waiting a specified time period for the check to clear, the lawyer gives the title to
Bob. If the check does not clear within the specified time period, Alice shows proof of thisto
the lawyer and the lawyer returnsthetitle to Alice.

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check has cleared, and to
giveit back to her if the check does not clear. Bob trusts the lawyer to hold the title until the check
clears, and to giveit to him once it does. The lawyer doesn’t care if the check clears. He will do his
part of the protocol in either case, because he will be paid in either case.

In the example, the lawyer is playing the part of an escrow agent. Lawyers also act as arbitrators for
wills and sometimes for contract negotiations. The various stock exchanges act as arbitrators
between buyers and sellers.

Bankers also arbitrate protocols. Bob can use a certified check to buy a car from Alice:

(1) Bob writesacheck and givesit to the bank.

(2) After putting enough of Bob’s money on hold to cover the check, the bank certifies the
check and givesit back to Bob.

(3) Alicegivesthetitleto Bob and Bob gives the certified check to Alice.

(4) Alice deposits the check.

This protocol works because Alice trusts the banker’ s certification. Alice trusts the bank to hold
Bob’s money for her, and not to use it to finance shaky real estate operations in mosquito-infested
countries.

A notary public is another arbitrator. When Bob receives a notarized document from Alice, heis
convinced that Alice signed the document voluntarily and with her own hand. The notary can, if
necessary, stand up in court and attest to that fact.

The concept of an arbitrator is as old as society. There have always been people—rulers, priests, and
so on—who have the authority to act fairly. Arbitrators have a certain social role and position in our
society; betraying the public trust would jeopardize that. Lawyers who play games with escrow
accounts face almost-certain disbarment, for example. This picture of trust doesn’t aways exist in
the real world, but it'sthe ideal.

Thisideal can trandate to the computer world, but there are several problems with computer
arbitrators:

— Itiseadsier to find and trust a neutral third party if you know who the party is and can see
his face. Two parties suspicious of each other are also likely to be suspicious of afaceless
arbitrator somewhere else on the network.

— The computer network must bear the cost of maintaining an arbitrator. We al know what
lawyers charge; who wants to bear that kind of network overhead?

— Thereisadelay inherent in any arbitrated protocol.

— The arbitrator must deal with every transaction; he is a bottleneck in large-scale
implementations of any protocol. Increasing the number of arbitrators in the implementation
can mitigate this problem, but that increases the cost.

— Since everyone on the network must trust the arbitrator, he represents a vulnerable point for
anyone trying to subvert the network.

Even so, arbitrators still have arole to play. In protocols using atrusted arbitrator, the part will be
played by Trent.

Adjudicated Protocols

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdivided into two lower-
level subprotocols. Oneis anonarbitrated subprotocol, executed every time parties want to
complete the protocol. The other is an arbitrated subprotocol, executed only in exceptional
circumstances—when thereis adispute. This specia type of arbitrator is called an adjudicator (see
Figure 2.1b).

An adjudicator is also adisinterested and trusted third party. Unlike an arbitrator, heis not directly
involved in every protocol. The adjudicator is called in only to determine whether a protocol was
performed fairly.

Judges are professional adjudicators. Unlike a notary public, ajudgeis brought in only if thereisa
dispute. Alice and Bob can enter into a contract without a judge. A judge never sees the contract
until one of them hauls the other into court.

This contract-signing protocol can be formalized in this way:

Nonarbitrated subprotocol (executed every time):

(1) Alice and Bob negotiate the terms of the contract.
(2) Alicesignsthe contract.
(3) Bob signsthe contract.

Adjudicated subprotocol (executed only in case of adispute):

(4) Alice and Bob appear before ajudge.
(5) Alice presents her evidence.

(6) Bob presents his evidence.

(7) Thejudge rules on the evidence.

The difference between an adjudicator and an arbitrator (as used in this book) is that the adjudicator
isnot always necessary. In adispute, ajudge is called in to adjudicate. If there is no dispute, using a
judge is unnecessary.

There are adjudicated computer protocols. These protocols rely on the parties to be honest; but if
someone suspects cheating, a body of data exists so that a trusted third party could determine if
someone cheated. In a good adjudicated protocol, the adjudicator could also determine the cheater’s
identity. Instead of preventing cheating, adjudicated protocols detect cheating. The inevitability of
detection acts as a preventive and discourages cheating.

Self-Enforcing Protocols

A self-enforcing protocol isthe best type of protocol. The protocol itself guarantees fairness (see
Figure 2.1c). No arbitrator is required to complete the protocol. No adjudicator is required to resolve
disputes. The protocol is constructed so that there cannot be any disputes. If one of the partiestries to
cheat, the other party immediately detects the cheating and the protocol stops. Whatever the cheating
party hoped would happen by cheating, doesn’t happen.

In the best of al possible worlds, every protocol would be self-enforcing. Unfortunately, there is not
a self-enforcing protocol for every situation.

Attacks against Protocols

Cryptographic attacks can be directed against the cryptographic agorithms used in protocols, against
the cryptographic techniques used to implement the algorithms and protocols, or against the
protocols themselves. Since this section of the book discusses protocols, | will assume that the
cryptographic algorithms and techniques are secure. | will only examine attacks against the
protocols.

People can try various ways to attack a protocol. Someone not involved in the protocol can
eavesdrop on some or al of the protocol. Thisis called apassive attack, because the attacker does
not affect the protocol. All he can do is observe the protocol and attempt to gain information. This
kind of attack corresponds to a ciphertext-only attack, as discussed in Section 1.1. Since passive
attacks are difficult to detect, protocolstry to prevent passive attacks rather than detect them. In these
protocols, the part of the eavesdropper will be played by Eve.

Alternatively, an attacker could try to alter the protocol to his own advantage. He could pretend to be
someone el se, introduce new messages in the protocol, del ete existing messages, substitute one
message for another, replay old messages, interrupt a communications channel, or alter stored
information in a computer. These are called active attacks, because they require active intervention.
The form of these attacks depends on the network.

Passive attackers try to gain information about the parties involved in the protocol. They collect

messages passing among various parties and attempt to cryptanalyze them. Active attacks, on the
other hand, can have much more diverse objectives. The attacker could be interested in obtaining
information, degrading system performance, corrupting existing information, or gaining
unauthorized access to resources.

Active attacks are much more serious, especially in protocols in which the different parties don’t
necessarily trust one another. The attacker does not have to be a complete outsider. He could be a
legitimate system user. He could be the system administrator. There could even be many active
attackers working together. Here, the part of the malicious active attacker will be played by Mallory.

It is also possible that the attacker could be one of the parties involved in the protocol. He may lie
during the protocol or not follow the protocol at all. Thistype of attacker is called acheater. Passive
cheater s follow the protocol, but try to obtain more information than the protocol intends them to.
Active cheater s disrupt the protocol in progress in an attempt to cheat.

It isvery difficult to maintain a protocol’s security if most of the parties involved are active cheaters,
but sometimesit is possible for legitimate parties to detect that active cheating is going on. Certainly,
protocols should be secure against passive cheating.

2.2 Communications Using Symmetric Cryptography

How do two parties communicate securely? They encrypt their communications, of course. The
complete protocol is more complicated than that. Let’s look at what must happen for Alice to send an
encrypted message to Bob.

(1) Alice and Bob agree on a cryptosystem.

(2) Alice and Bob agree on akey.

(3) Alice takes her plaintext message and encryptsit using the encryption algorithm and the
key. This creates a ciphertext message.

(4) Alice sends the ciphertext message to Bob.

(5) Bob decrypts the ciphertext message with the same algorithm and key and readsit.

What can Eve, sitting between Alice and Bab, learn from listening in on this protocol ? If all she
hearsisthe transmission in step (4), she must try to cryptanalyze the ciphertext. This passive attack
is a ciphertext-only attack; we have algorithms that are resistant (as far as we know) to whatever
computing power Eve could redlistically bring to bear on the problem.

Eveisn't stupid, though. She also wants to listen in on steps (1) and (2). Then, she would know the
algorithm and the key—just as well as Bob. When the message comes across the communications
channel in step (4), all she hasto do is decrypt it herself.

A good cryptosystem is one in which all the security isinherent in knowledge of the key and noneis
inherent in knowledge of the algorithm. Thisiswhy key management is so important in
cryptography. With a symmetric algorithm, Alice and Bob can perform step (1) in public, but they
must perform step (2) in secret. The key must remain secret before, during, and after the protocol—
as long as the message must remain secret—otherwise the message will no longer be secure. (Public-
key cryptography solves this problem another way, and will be discussed in Section 2.5.)

Mallory, an active attacker, could do afew other things. He could attempt to break the
communications path in step (4), ensuring that Alice could not talk to Bob at all. Mallory could aso
intercept Alice’ s messages and substitute his own. If he knew the key (by intercepting the
communication in step (2), or by breaking the cryptosystem), he could encrypt his own message and
send it to Bob in place of the intercepted message. Bob would have no way of knowing that the
message had not come from Alice. If Malory didn’t know the key, he could only create a

replacement message that would decrypt to gibberish. Bob, thinking the message came from Alice,
might conclude that either the network or Alice had some serious problems.

What about Alice? What can she do to disrupt the protocol ? She can give a copy of the key to Eve.
Now Eve can read whatever Bob says. She can reprint hiswordsin The New York Times. Although
serious, thisis not a problem with the protocol. There is nothing to stop Alice from giving Eve a
copy of the plaintext at any point during the protocol. Of course, Bob could also do anything that
Alice could. This protocol assumes that Alice and Bab trust each other.

In summary, symmetric cryptosystems have the following problems:

— Keys must be distributed in secret. They are as valuable as all the messages they encrypt,
since knowledge of the key gives knowledge of all the messages. For encryption systems that
span the world, this can be a daunting task. Often couriers hand-carry keysto their
destinations.

— If akey is compromised (stolen, guessed, extorted, bribed, etc.), then Eve can decrypt all
message traffic encrypted with that key. She can also pretend to be one of the parties and
produce fal se messages to fool the other party.

— Assuming a separate key is used for each pair of usersin a network, the total number of
keysincreases rapidly as the number of usersincreases. A network of n users requires n(n -
1)/2 keys. For example, 10 usersrequire 45 different keys to talk with one another and 100
users require 4950 keys. This problem can be minimized by keeping the number of users
small, but that is not always possible.

2.3 One-Way Functions

The notion of aone-way function is central to public-key cryptography. While not protocolsin
themselves, one-way functions are a fundamental building block for most of the protocols discussed
in this book.

One-way functions are relatively easy to compute, but significantly harder to reverse. That is, given x
it is easy to compute f(x), but given f(x) it is hard to compute X. In this context, "hard" is defined as
something like: It would take millions of years to compute x from f(x), even if all the computersin
the world were assigned to the problem.

Breaking a plate is a good example of aone-way function. It is easy to smash a plate into a thousand
tiny pieces. However, it’s not easy to put all of those tiny pieces back together into a plate.

This sounds good, but it's alot of smoke and mirrors. If we are being strictly mathematical, we have
no proof that one-way functions exist, nor any real evidence that they can be constructed
[230,530,600,661]. Even so, many functions look and smell one-way: We can compute them

efficiently and, as of yet, know of no easy way to reverse them. For example, in afinite field X2 is

easy to compute, but xX/2 is much harder. For the rest of this section, I'm going to pretend that there
are one-way functions. I’ [l talk more about thisin Section 11.2.

So, what good are one-way functions? We can’t use them for encryption asis. A message encrypted
with the one-way function isn’'t useful; no one could decrypt it. (Exercise: Write amessage on a
plate, smash the plate into tiny bits, and then give the bitsto afriend. Ask your friend to read the
message. Observe how impressed he is with the one-way function.) For public-key cryptography, we
need something else (although there are cryptographic applications for one-way functions—see
Section 3.2).

A trapdoor one-way function isaspecial type of one-way function, one with a secret trapdoor. It is

easy to compute in one direction and hard to compute in the other direction. But, if you know the
secret, you can easily compute the function in the other direction. That is, it is easy to compute f(X)
given x, and hard to compute x given f(x). However, there is some secret information, y, such that
given f(x) and y it is easy to compute x.

Taking awatch apart is agood example of atrap-door one-way function. It is easy to disassemble a
watch into hundreds of minuscule pieces. It isvery difficult to put those tiny pieces back together
into aworking watch. However, with the secret information—the assembly instructions of the
watch—it is much easier to put the watch back together.

2.4 One-Way Hash Functions

A one-way hash function has many names: compression function, contraction function, message
digest, fingerprint, cryptographic checksum, message integrity check (MIC), and manipulation
detection code (MDC). Whatever you call it, it is central to modern cryptography. One-way hash
functions are another building block for many protocols.

Hash functions have been used in computer science for along time. A hash function is a function,
mathematical or otherwise, that takes a variable-length input string (called a pre-image) and
convertsit to afixed-length (generally smaller) output string (called a hash value). A simple hash
function would be a function that takes pre-image and returns a byte consisting of the XOR of all the
input bytes.

The point hereisto fingerprint the pre-image: to produce a value that indicates whether a candidate
pre-imageislikely to be the same as the rea pre-image. Because hash functions are typically many-
to-one, we cannot use them to determine with certainty that the two strings are equal, but we can use
them to get a reasonabl e assurance of accuracy.

A one-way hash function is a hash function that works in one direction: It is easy to compute a hash
value from pre-image, but it is hard to generate a pre-image that hashes to a particular value. The
hash function previously mentioned is not one-way: Given a particular byte value, it istrivial to
generate a string of bytes whose XOR isthat value. You can’t do that with a one-way hash function.
A good one-way hash function is also collision-free: It is hard to generate two pre-images with the
same hash value.

The hash function is public; there’' s no secrecy to the process. The security of a one-way hash
function isits one-wayness. The output is not dependent on the input in any discernible way. A
single bit change in the pre-image changes, on the average, half of the bitsin the hash value. Given a
hash value, it is computationally unfeasible to find a pre-image that hashes to that value.

Think of it asaway of fingerprinting files. If you want to verify that someone has a particular file
(that you aso have), but you don’t want him to send it to you, then ask him for the hash value. If he
sends you the correct hash value, then it is almost certain that he has that file. Thisis particularly
useful in financial transactions, where you don’'t want awithdrawal of $100 to turn into a withdrawal
of $1000 somewhere in the network. Normally, you would use a one-way hash function without a
key, so that anyone can verify the hash. If you want only the recipient to be able to verify the hash,
then read the next section.

Message Authentication Codes

A message authentication code (MAC), aso known as a data authentication code (DAC), isaone-
way hash function with the addition of a secret key (see Section 18.14). The hash value isafunction
of both the pre-image and the key. The theory is exactly the same as hash functions, except only
someone with the key can verify the hash value. Y ou can create aMAC out of a hash function or a

block encryption algorithm; there are also dedicated MACs.
2.5 Communications Using Public-K ey Cryptography

Think of a symmetric algorithm as a safe. The key is the combination. Someone with the
combination can open the safe, put a document inside, and close it again. Someone else with the
combination can open the safe and take the document out. Anyone without the combination is forced
to learn safecracking.

In 1976, Whitfield Diffie and Martin Hellman changed that paradigm of cryptography forever [496].
(The NSA has claimed knowledge of the concept as early as 1966, but has offered no proof.) They
described public-key cryptography. They used two different keys—one public and the other
private. It is computationally hard to deduce the private key from the public key. Anyone with the
public key can encrypt a message but not decrypt it. Only the person with the private key can decrypt
the message. It isasif someone turned the cryptographic safe into a mailbox. Putting mail in the
mailbox is analogous to encrypting with the public key; anyone can do it. Just open the slot and drop
it in. Getting mail out of a mailbox is analogous to decrypting with the private key. Generdly it's
hard; you need welding torches. However, if you have the secret (the physical key to the mailbox),
it's easy to get mail out of a mailbox.

Mathematically, the processis based on the trap-door one-way functions previously discussed.
Encryption is the easy direction. Instructions for encryption are the public key; anyone can encrypt a
message. Decryption is the hard direction. It's made hard enough that people with Cray computers
and thousands (even millions) of years couldn’t decrypt the message without the secret. The secret,
or trapdoor, isthe private key. With that secret, decryption is as easy as encryption.

Thisis how Alice can send a message to Bob using public-key cryptography:

(1) Alice and Bob agree on a public-key cryptosystem.

(2) Bob sends Alice his public key.

(3) Alice encrypts her message using Bob'’s public key and sends it to Bab.
(4) Bob decrypts Alice’'s message using his private key.

Notice how public-key cryptography solves the key-management problem with symmetric
cryptosystems. Before, Alice and Bob had to agree on akey in secret. Alice could choose one at
random, but she still had to get it to Bob. She could hand it to him sometime beforehand, but that
requires foresight. She could send it to him by secure courier, but that takes time. Public-key
cryptography makes it easy. With no prior arrangements, Alice can send a secure message to Bob.
Eve, listening in on the entire exchange, has Bob'’ s public key and a message encrypted in that key,
but cannot recover either Bob's private key or the message.

More commonly, a hetwork of users agrees on a public-key cryptosystem. Every user has his or her
own public key and private key, and the public keys are al published in a database somewhere. Now
the protocol is even easier:

(1) Alice gets Bob's public key from the database.
(2) Alice encrypts her message using Bob'’s public key and sends it to Bob.
(3) Baob then decrypts Alice' s message using his private key.

In the first protocol, Bob had to send Alice his public key before she could send him amessage. The
second protocol is more like traditional mail. Bob is not involved in the protocol until he wantsto
read his message.

Hybrid Cryptosystems

The first public-key algorithms became public at the same time that DES was being discussed as a
proposed standard. This resulted in some partisan politics in the cryptographic community. As Diffie
described it [494]:

The excitement public key cryptosystems provoked in the popular and scientific press
was not matched by corresponding acceptance in the cryptographic establishment,
however. In the same year that public key cryptography was discovered, the National
Security Agency (NSA), proposed a conventional cryptographic system, designed by
International Business Machines (IBM), as afederal Data Encryption Sandard (DES).
Marty Hellman and | criticized the proposal on the ground that its key was too small, but
manufacturers were gearing up to support the proposed standard and our criticism was
seen by many as an attempt to disrupt the standards-making process to the advantage of
our own work. Public key cryptography in its turn was attacked, in sales literature
[1125] and technical papers[849,1159] alike, more as though it were a competing
product than a recent research discovery. This, however, did not deter the NSA from
claiming its share of the credit. Its director, in the words of the Encyclopedia Britannica
[1461], pointed out that "two-key cryptography had been discovered at the agency a
decade earlier,” although no evidence for this claim was ever offered publicly.

In the real world, public-key algorithms are not a substitute for symmetric algorithms. They are not
used to encrypt messages; they are used to encrypt keys. There are two reasons for this:

1. Public-key algorithms are low. Symmetric algorithms are generally at least 1000 times
faster than public-key algorithms. Y es, computers are getting faster and faster, and in 15 years
computers will be able to do public-key cryptography at speeds comparable to symmetric
cryptography today. But bandwidth requirements are also increasing, and there will always be
the need to encrypt data faster than public-key cryptography can manage.

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C = E(P), when P is
one plaintext out of a set of n possible plaintexts, then a cryptanayst only hasto encrypt all n
possible plaintexts and compare the results with C (remember, the encryption key is public).
He won't be able to recover the decryption key this way, but he will be able to determine P.

A chosen-plaintext attack can be particularly effectiveif there are relatively few possible encrypted
messages. For example, if P were a dollar amount less than $1,000,000, this attack would work; the
cryptanalyst tries al million possible dollar amounts. (Probabilistic encryption solves the problem;
see Section 23.15.) Even if P is not as well-defined, this attack can be very effective. Simply
knowing that a ciphertext does not correspond to a particular plaintext can be useful information.
Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst cannot perform
trial encryptions with an unknown key.

In most practical implementations public-key cryptography is used to secure and distribute session
keys; those session keys are used with symmetric algorithms to secure message traffic [879]. Thisis
sometimes called ahybrid cryptosystem.

(1) Bob sendsAlice his public key.

(2) Alice generates arandom session key, K, encryptsit using Bob’s public key, and sends it
to Bob.

Eg(K)

(3) Bob decrypts Alice’'s message using his private key to recover the session key.
Dg(Eg(K)) =K

(4) Both of them encrypt their communications using the same session key.

Using public-key cryptography for key distribution solves avery important key-management
problem. With symmetric cryptography, the data encryption key sits around until it is used. If Eve

ever gets her hands on it, she can decrypt messages encrypted with it. With the previous protocol, the
session key is created when it is needed to encrypt communications and destroyed when it isno
longer needed. This drastically reduces the risk of compromising the session key. Of course, the
private key is vulnerable to compromise, but it is at less risk because it is only used once per
communication to encrypt asession key. Thisis further discussed in Section 3.1.

Merkle' s Puzzles

Ralph Merkle invented the first construction of public-key cryptography. In 1974 he registered for a
course in computer security at the University of California, Berkeley, taught by Lance Hoffman. His
term paper topic, submitted early in the term, addressed the problem of " Secure Communication over
Insecure Channels' [1064]. Hoffman could not understand Merkle' s proposal and eventually Merkle
dropped the course. He continued to work on the problem, despite continuing failure to make his
results understood.

Merkle' s technique was based on "puzzles' that were easier to solve for the sender and receiver than
for an eavesdropper. Here' s how Alice sends an encrypted message to Bob without first having to
exchange a key with him.

(1) Bob generates 220 or about amillion, messages of the form: "Thisis puzzle number x.
Thisisthe secret key number y," where x is arandom number and y is arandom secret key.
Both x and y are different for each message. Using a symmetric algorithm, he encrypts each
message with a different 20-bit key and sends them all to Alice.

(2) Alice chooses one message at random and performs a brute-force attack to recover the
plaintext. Thisisalarge, but not impossible, amount of work.

(3) Aliceencrypts her secret message with the key she recovered and some symmetric
algorithm, and sends it to Bob along with x.

(4) Bob knows which secret key y he encrypts in message X, so he can decrypt the message.

Eve can break this system, but she has to do far more work than either Alice or Bob. To recover the
message in step (3), she has to perform a brute-force attack against each of Bob’s 220 messagesin

step (1); this attack has a complexity of 2% The x valueswon't hel p Eve either; they were assigned
randomly in step (1). In general, Eve has to expend approximately the square of the effort that Alice
expends.

Thisnto n? advantage is small by cryptographic standards, but in some circumstancesit may be
enough. If Alice and Bob can try ten thousand keys per second, it will take them aminute each to
perform their steps and another minute to communicate the puzzles from Bob to Alice on a1.544
MB link. If Eve had comparable computing facilities, it would take her about a year to break the
system. Other algorithms are even harder to break.

2.6 Digital Signatures

Handwritten signatures have long been used as proof of authorship of, or at least agreement with, the
contents of a document. What is it about a signature that is so compelling [1392]?

1. The signature is authentic. The signature convinces the document’ s recipient that the signer
deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signer, and no one else,
deliberately signed the document.

3. The signatureis not reusable. The signatureis part of the document; an unscrupul ous
person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it cannot be altered.

5. The signature cannot be repudiated. The signature and the document are physical things.
The signer cannot later claim that he or she didn’t sign it.

In reality, none of these statements about signatures is completely true. Signatures can be forged,
signatures can be lifted from one piece of paper and moved to another, and documents can be altered
after signing. However, we are willing to live with these problems because of the difficulty in
cheating and the risk of detection.

We would like to do this sort of thing on computers, but there are problems. First, computer files are
trivial to copy. Even if aperson’s signature were difficult to forge (a graphical image of awritten
signature, for example), it would be easy to cut and paste avalid signature from one document to
another document. The mere presence of such a signature means nothing. Second, computer files are
easy to modify after they are signed, without leaving any evidence of modification.

Signing Documents with Symmetric Cryptosystems and an Arbitrator

Alice wantsto sign adigital message and send it to Bob. With the help of Trent and a symmetric
cryptosystem, she can.

Trent is apowerful, trusted arbitrator. He can communicate with both Alice and Bob (and everyone
else who may want to sign adigital document). He shares a secret key, K, , with Alice, and a

different secret key, Kg, with Bob. These keys have been established long before the protocol begins
and can be reused multiple times for multiple signings.

(1) Aliceencrypts her message to Bob with K, and sendsit to Trent.
(2) Trent decrypts the message with K.

(3) Trent takes the decrypted message and a statement that he has received this message from
Alice, and encrypts the whole bundle with K.

(4) Trent sends the encrypted bundle to Bob.
(5) Bob decrypts the bundle with K. He can now read both the message and Trent’s

certification that Alice sent it.

How does Trent know that the message is from Alice and not from some imposter? He infersit from
the message’ s encryption. Since only he and Alice share their secret key, only Alice could encrypt a

message using it.
Isthis as good as a paper signature? Let’slook at the characteristics we want:

1. Thissignatureisauthentic. Trent isatrusted arbitrator and Trent knows that the message
came from Alice. Trent’s certification serves as proof to Bob.
2. Thissignature is unforgeable. Only Alice (and Trent, but everyone trusts him) knows K, ,

so only Alice could have sent Trent a message encrypted with K . If someonetried to

impersonate Alice, Trent would have immediately realized thisin step (2) and would not
certify its authenticity.

3. Thissignatureis not reusable. If Bob tried to take Trent’ s certification and attach it to
another message, Alice would cry foul. An arbitrator (it could be Trent or it could be a
completely different arbitrator with access to the same information) would ask Bob to produce
both the message and Alice’ s encrypted message. The arbitrator would then encrypt the
message with K, and see that it did not match the encrypted message that Bob gave him. Bob,

of course, could not produce an encrypted message that matches because he does not know
Ky.
A

4. The signed document is unalterable. Were Bob to try to alter the document after receipt,
Trent could prove foul play in exactly the same manner just described.

5. The signature cannot be repudiated. Even if Alice later claims that she never sent the
message, Trent’s certification says otherwise. Remember, Trent istrusted by everyone; what
he saysistrue.

If Bob wants to show Carol a document signed by Alice, he can’'t reveal his secret key to her. He has
to go through Trent again:

(1) Bob takesthe message and Trent’s statement that the message came from Alice, encrypts
them with K, and sends them back to Trent.

(2) Trent decrypts the bundle with K.

(3) Trent checks his database and confirms that the original message came from Alice.
(4) Trent re-encrypts the bundle with the secret key he shares with Carol, K, and sendsiit to

Caroal.
(5) Carol decrypts the bundle with K~. She can now read both the message and Trent’s

certification that Alice sent it.

These protocols work, but they’ re time-consuming for Trent. He must spend his days decrypting and
encrypting messages, acting as the intermediary between every pair of people who want to send
signed documents to one another. He must keep a database of messages (although this can be
avoided by sending the recipient a copy of the sender’ s encrypted message). He is a bottleneck in
any communications system, even if he's a mindless software program.

Harder still is creating and maintaining someone like Trent, someone that everyone on the network
trusts. Trent hasto be infallible; if he makes even one mistake in amillion signatures, no oneis
going to trust him. Trent has to be completely secure. If his database of secret keys ever got out or if
someone managed to modify his programming, everyone's signatures would be completely useless.
False documents purported to be signed years ago could appear. Chaos would result. Governments
would collapse. Anarchy would reign. This might work in theory, but it doesn’t work very well in
practice.

Digital Signature Trees

Ralph Merkle proposed a digital signature scheme based on secret-key cryptography, producing an
infinite number of one-time signatures using atree structure [1067,1068]. The basic idea of this
scheme is to place the root of the tree in some public file, thereby authenticating it. The root signs
one message and authenticates its sub-nodes in the tree. Each of these nodes signs one message and
authenticates its sub-nodes, and so on.

Signing Documents with Public-Key Cryptography

There are public-key algorithms that can be used for digital signatures. In some algorithms—RSA is
an example (see Section 19.3)—either the public key or the private key can be used for encryption.
Encrypt a document using your private key, and you have a secure digital signature. In other cases—
DSA isan example (see Section 20.1)—there is a separate algorithm for digital signatures that
cannot be used for encryption. Thisideawas first invented by Diffie and Hellman [496] and further
expanded and elaborated on in other texts [1282,1328,1024,1283,426]. See [1099] for a good survey
of thefield.

The basic protocol is simple:

(1) Alice encrypts the document with her private key, thereby signing the document.
(2) Alice sendsthe signed document to Bob.
(3) Bob decrypts the document with Alice s public key, thereby verifying the signature.

This protocol isfar better than the previous one. Trent is not needed to either sign or verify
signatures. (He is needed to certify that Alice’s public key isindeed her public key.) The parties do
not even need Trent to resolve disputes. If Bob cannot perform step (3), then he knows the signature
isnot valid.

This protocol also satisfies the characteristics we' re looking for:

1. The signature is authentic; when Bob verifies the message with Alice’s public key, he
knows that she signed it.

2. Thesignature is unforgeable; only Alice knows her private key.

3. The signatureis not reusable; the signature is afunction of the document and cannot be
transferred to any other document.

4. The signed document is unalterable; if there is any alteration to the document, the signature
can no longer be verified with Alice’s public key.

5. The signature cannot be repudiated. Bob doesn’t need Alice's help to verify her signature.

Signing Documents and Timestamps

Actually, Bob can cheat Alicein certain circumstances. He can reuse the document and signature
together. Thisis no problem if Alice signed a contract (what’s another copy of the same contract,
more or less?), but it can be very exciting if Alice signed adigital check.

Let’s say Alice sends Bob asigned digital check for $100. Bob takes the check to the bank, which
verifies the signature and moves the money from one account to the other. Bob, whois an
unscrupulous character, saves a copy of the digital check. The following week, he again takes it to
the bank (or maybe to adifferent bank). The bank verifies the signature and moves the money from
one account to the other. If Alice never balances her checkbook, Bob can keep this up for years.

Consequently, digital signatures often include timestamps. The date and time of the signature are
attached to the message and signed along with the rest of the message. The bank stores this
timestamp in a database. Now, when Bob tries to cash Alice’s check a second time, the bank checks
the timestamp against its database. Since the bank already cashed a check from Alice with the same
timestamp, the bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on
cryptographic protocols.

Signing Documents with Public-Key Cryptography and One-Way Hash Functions

In practical implementations, public-key algorithms are often too inefficient to sign long documents.
To savetime, digital signature protocols are often implemented with one-way hash functions
[432,433]. Instead of signing a document, Alice signs the hash of the document. In this protocol,
both the one-way hash function and the digital signature algorithm are agreed upon beforehand.

(1) Alice produces aone-way hash of a document.

(2) Alice encrypts the hash with her private key, thereby signing the document.

(3) Alice sends the document and the signed hash to Bob.

(4) Bob produces a one-way hash of the document that Alice sent. He then, using the digital
signature algorithm, decrypts the signed hash with Alice's public key. If the signed hash
matches the hash he generated, the signature is valid.

Speed increases drastically and, since the chances of two different documents having the same 160-

bit hash are only onein 2169, anyone can safely equate a signature of the hash with a signature of the
document. If anon-one-way hash function were used, it would be an easy matter to create multiple
documents that hashed to the same value, so that anyone signing a particular document would be
duped into signing a multitude of documents.

This protocol has other benefits. First, the signature can be kept separate from the document. Second,
the recipient’ s storage requirements for the document and signature are much smaller. An archival
system can use this type of protocol to verify the existence of documents without storing their
contents. The central database could just store the hashes of files. It doesn’t have to see thefiles at
all; users submit their hashes to the database, and the database timestamps the submissions and stores
them. If there is any disagreement in the future about who created a document and when, the
database could resolve it by finding the hash in itsfiles. This system has vast implications
concerning privacy: Alice could copyright a document but still keep the document secret. Only if she
wished to prove her copyright would she have to make the document public. (See Section 4.1).

Algorithms and Terminology

There are many digital signature algorithms. All of them are public-key algorithms with secret
information to sign documents and public information to verify signatures. Sometimes the signing
processis called encrypting with a private key and the verification processis called decrypting
with a public key. Thisismisleading and is only true for one algorithm, RSA. And different
algorithms have different implementations. For example, one-way hash functions and timestamps
sometimes add extra steps to the process of signing and verifying. Many agorithms can be used for
digital signatures, but not for encryption.

In general, | will refer to the signing and verifying processes without any details of the algorithms
involved. Signing a message with private key K is:

(M)

and verifying a signature with the corresponding public key is:

V(M)

The bit string attached to the document when signed (in the previous example, the one-way hash of
the document encrypted with the private key) will be called the digital signature, or just the
signature. The entire protocol, by which the receiver of a message is convinced of the identity of the
sender and the integrity of the message, is called authentication. Further details on these protocols
arein Section 3.2.

Multiple Signatures

How could Alice and Bob sign the same digital document? Without one-way hash functions, there
are two options. Oneisthat Alice and Bob sign separate copies of the document itself. The resultant
message would be over twice the size of the original document. The second isthat Alice signsthe
document first and then Bob signs Alice’ s signature. Thisworks, but it isimpossible to verify

Alice' s signature without also verifying Bob's.

With one-way hash functions, multiple signatures are easy:
(1) Alice signsthe hash of the document.

(2) Bob signsthe hash of the document.
(3) Bob sends his signature to Alice.

(4) Alice sends the document, her signature, and Bob' s signature to Carol.
(5) Carol verifies both Alice' s signature and Bob’ s signature.

Alice and Bob can do steps (1) and (2) either in parallel or in series. In step (5), Carol can verify one
signature without having to verify the other.

Nonrepudiation and Digital Signatures

Alice can cheat with digital signatures and there’ s nothing that can be done about it. She can sign a
document and then later claim that she did not. First, she signs the document normally. Then, she
anonymously publishes her private key, conveniently losesit in a public place, or just pretends to do
either one. Alice then claims that her signature has been compromised and that others are using it,
pretending to be her. She disavows signing the document and any others that she signed using that
private key. Thisis called repudiation.

Timestamps can limit the effects of this kind of cheating, but Alice can always claim that her key
was compromised earlier. If Alice times things well, she can sign a document and then successfully
claim that she didn’t. Thisiswhy there is so much talk about private keys buried in tamper-resi stant
modules—so that Alice can’t get at hers and abuse it.

Although nothing can be done about this possible abuse, one can take steps to guarantee that old
signatures are not invalidated by actions taken in disputing new ones. (For example, Alice could
"lose" her key to keep from paying Bob for the junk car he sold her yesterday and, in the process,
invalidate her bank account.) The solution is for the receiver of a signed document to have it
timestamped [453].

The general protocol isgivenin [28]:

(1) Alice signs amessage.

(2) Alice generates a header containing some identifying information. She concatenates the
header with the signed message, signs that, and sendsiit to Trent.

(3) Trent verifiesthe outside signature and confirms the identifying information. He adds a
timestamp to Alice' s signed message and the identifying information. Then he signsit all and
sendsit to both Alice and Bob.

(4) Bob verifies Trent’ s signature, the identifying information, and Alice’ s signature.

(5) Alice verifiesthe message Trent sent to Bob. If she did not originate the message, she
speaks up quickly.

Another scheme uses Trent after the fact [209]. After receiving a signed message, Bob can send a
copy to Trent for verification. Trent can attest to the validity of Alice’ s signature.

Applications of Digital Signatures

One of the earliest proposed applications of digital signatures was to facilitate the verification of
nuclear test ban treaties [1454,1467]. The United States and the Soviet Union (anyone remember the
Soviet Union?) permitted each other to put seismometers on the other’ s soil to monitor nuclear tests.
The problem was that each country needed to assure itself that the host nation was not tampering
with the data from the monitoring nation’ s seismometers. Simultaneously, the host nation needed to
assure itself that the monitor was sending only the specific information needed for monitoring.

Conventional authentication techniques can solve the first problem, but only digital signatures can
solve both problems. The host nation can read, but not alter, data from the seismometer, and the
monitoring nation knows that the data has not been tampered with.

2.7 Digital Signatureswith Encryption

By combining digital signatures with public-key cryptography, we develop a protocol that combines
the security of encryption with the authenticity of digital signatures. Think of aletter from your
mother: The signature provides proof of authorship and the envelope provides privacy.

(1) Alice signsthe message with her private key.

Sp(M)

(2) Alice encrypts the signed message with Bob’'s public key and sends it to Bob.
Eg(Sy(M))

(3) Bob decrypts the message with his private key.

DB(EB(SA(M))) = SA(M)

(4) Bob verifieswith Alice's public key and recovers the message.

Va(Sy (M) =M

Signing before encrypting seems natural. When Alice writes a letter, she signsit and then putsitin
an envelope. If she put the letter in the envelope unsigned and then signed the envel ope, then Bob
might worry if the letter hadn’t been covertly replaced. If Bob showed to Carol Alice’ s letter and
envelope, Carol might accuse Bob of lying about which letter arrived in which envelope.

In electronic correspondence as well, signing before encrypting is a prudent practice [48]. Not only
iSit more secure—an adversary can’'t remove a signature from an encrypted message and add his
own—but there are legal considerations: If the text to be signed is not visible to the signer when he
affixes his signature, then the signature may have little legal force [1312]. And there are some
cryptanalytic attacks against this technique with RSA signatures (see Section 19.3).

There’ s no reason Alice has to use the same public-key/private-key key pair for encrypting and
signing. She can have two key pairs. one for encryption and the other for signatures. Separation has
its advantages: she can surrender her encryption key to the police without compromising her
signature, one key can be escrowed (see Section 4.13) without affecting the other, and the keys can
have different sizes and can expire at different times.

Of course, timestamps should be used with this protocol to prevent reuse of messages. Timestamps
can also protect against other potential pitfalls, such as the one described below.

Resending the Message as a Receipt

Consider an implementation of this protocol, with the additional feature of confirmation messages.
Whenever Bob receives a message, he returnsit as a confirmation of receipt.

(1) Alice signs amessage with her private key, encryptsit with Bob’s public key, and sendsiit
to Bob.

Eg(Sy(M))

(2) Bob decrypts the message with his private key and verifies the signature with Alice's
public key, thereby verifying that Alice signed the message and recovering the message.
VA(Dg(Eg(Sy(M)))) =M

(3) Bob signs the message with his private key, encrypts it with Alice’ s public key, and sends
it back to Alice.

EA(Sg(M))

(4) Alice decrypts the message with her private key and verifies the signature with Bob's
public key. If the resultant message is the same one she sent to Bob, she knows that Bob
received the message accurately.

If the same algorithm is used for both encryption and digital-signature verification there is a possible
attack [506]. In these cases, the digital signature operation is the inverse of the encryption operation:
Vy =Eyand S, =Dy.

Assume that Mallory is alegitimate system user with his own public and private key. Now, let’s
watch as he reads Bob’ s mail. First, he records Alice’ s message to Bob in step (1). Then, at some
later time, he sends that message to Bob, claiming that it came from him (Mallory). Bob thinks that it
is alegitimate message from Mallory, so he decrypts the message with his private key and then tries
to verify Mallory’ s signature by decrypting it with Mallory’s public key. The resultant message,
which is pure gibberish, is:

= (DB(EB(DA(M)))) =Ey (DA(M))
Even so, Bob goes on with the protocol and sends Mallory areceipt:
Ep(Dg(Ey (Do M))))

Now, all Mallory hasto do is decrypt the message with his private key, encrypt it with Bob’s public
key, decrypt it again with his private key, and encrypt it with Alice’'s public key. Voilal Mallory has
M.

It is not unreasonabl e to imagine that Bob may automatically send Mallory areceipt. This protocol
may be embedded in his communications software, for example, and send receipts automatically. It
isthiswillingness to acknowledge the receipt of gibberish that creates the insecurity. If Bob checked
the message for comprehensibility before sending areceipt, he could avoid this security problem.

There are enhancements to this attack that allow Mallory to send Bob a different message from the
one he eavesdropped on. Never sign arbitrary messages from other people or decrypt arbitrary
messages and give the results to other people.

Foiling the Resend Attack

The attack just described works because the encrypting operation is the same as the signature-
verifying operation and the decryption operation is the same as the signature operation. A secure
protocol would use even adlightly different operation for encryption and digital signatures. Using
different keys for each operation solves the problem, as does using different algorithms for each
operation; as do timestamps, which make the incoming message and the outgoing message different;
asdo digital signatures with one-way hash functions (see Section 2.6).

In general, then, the following protocol is secure as the public-key algorithm used:

(1) Alice signs amessage.

(2) Alice encrypts the message and signature with Bob' s public key (using a different
encryption algorithm than for the signature) and sends it to Bob.

(3) Bob decrypts the message with his private key.

(4) Bob verifies Alice' s signature.

Attacks against Public-Key Cryptography

In al these public-key cryptography protocols, | glossed over how Alice gets Bob's public key.
Section 3.1 discusses thisin detail, but it is worth mentioning here.

The easiest way to get someone’s public key is from a secure database somewhere. The database has
to be public, so that anyone can get anyone else’'s public key. The database also has to be protected
from write-access by anyone except Trent; otherwise Mallory could substitute any public key for
Bob's. After he did that, Bob couldn’t read messages addressed to him, but Mallory could.

Even if the public keys are stored in a secure database, Mallory could still substitute one for another
during transmission. To prevent this, Trent can sign each public key with his own private key. Trent,
when used in this manner, is often known asaKey Certification Authority or Key Distribution
Center (KDC). In practical implementations, the KDC sighs a compound message consisting of the
user’ s name, his public key, and any other important information about the user. This signed
compound message is stored in the KDC' s database. When Alice gets Bob's key, she verifies the
KDC's signature to assure herself of the key’ s validity.

In the final analysis, thisis not making things impossible for Mallory, only more difficult. Alice still
has the KDC'’ s public key stored somewhere. Mallory would have to substitute his own public key
for that key, corrupt the database, and substitute his own keys for the valid keys (all signed with his
private key asif he were the KDC), and then he’ sin business. But, even paper-based signatures can
be forged if Mallory goes to enough trouble. Key exchange will be discussed in minute detail in
Section 3.1.

2.8 Random and Pseudo-Random-Sequence Gener ation

Why even bother with random-number generation in abook on cryptography? There's already a
random-number generator built into most every compiler, a mere function call away. Why not use
that? Unfortunately, those random-number generators are amost definitely not secure enough for
cryptography, and probably not even very random. Most of them are embarrassingly bad.

Random-number generators are not random because they don’'t have to be. Most simple applications,
like computer games, need so few random numbers that they hardly notice. However, cryptography
is extremely sensitive to the properties of random-number generators. Use a poor random-number
generator and you start getting weird correlations and strange results [1231,1238]. If you are
depending on your random-number generator for security, weird correlations and strange results are
the last things you want.

The problem is that a random-number generator doesn’t produce a random sequence. It probably
doesn’t produce anything that looks even remotely like arandom sequence. Of coursg, itis
impossible to produce something truly random on a computer. Donald Knuth quotes John von
Neumann as saying: "Anyone who considers arithmetical methods of producing random digitsis, of
course, in astate of sin" [863]. Computers are deterministic beasts: Stuff goesin one end, completely
predictable operations occur inside, and different stuff comes out the other end. Put the same stuff in
on two separate occasions and the same stuff comes out both times. Put the same stuff into two
identical computers, and the same stuff comes out of both of them. A computer can only bein a
finite number of states (alarge finite number, but afinite number nonetheless), and the stuff that
comes out will always be a deterministic function of the stuff that went in and the computer’s current
state. That means that any random-number generator on a computer (at least, on afinite-state
machine) is, by definition, periodic. Anything that is periodic is, by definition, predictable. And if
something is predictable, it can’t be random. A true random-number generator requires some random
input; acomputer can't provide that.

Pseudo-Random Sequences

The best a computer can produce is a pseudo-random-sequence gener ator. What' s that? Many
people have taken a stab at defining this formally, but I’ [l hand-wave here. A pseudo-random
sequence is one that looks random. The sequence’s period should be long enough so that afinite

sequence of reasonable length—that is, one that is actually used—is not periodic. If you need a
billion random bits, don’t choose a sequence generator that repeats after only sixteen thousand bits.
These relatively short nonperiodic subsequences should be as indistinguishable as possible from
random sequences. For example, they should have about the same number of ones and zeros, about
half the runs (sequences of the same bit) should be of length one, one quarter of length two, one
eighth of length three, and so on. They should not be compressible. The distribution of run lengths
for zeros and ones should be the same [643,863,99,1357]. These properties can be empirically
measured and then compared to statistical expectations using a chi-square test.

For our purposes, a sequence generator is pseudo-random if it has this property:

1. It looks random. This meansthat it passes all the statistical tests of randomness that we can
find. (Start with the onesin [863].)

A lot of effort has gone into producing good pseudo-random sequences on computer. Discussions of
generators abound in the academic literature, along with various tests of randomness. All of these

generators are periodic (there' s no escaping that); but with potential periods of 2256 pits and higher,
they can be used for the largest applications.

The problem is still those weird correlations and strange results. Every pseudo-random-sequence
generator is going to produce them if you use them in a certain way. And that’ s what a cryptanalyst
will use to attack the system.

Cryptographically Secure Pseudo-Random Sequences

Cryptographic applications demand much more of a pseudo-random-sequence generator than do
most other applications. Cryptographic randomness doesn’t mean just statistical randomness,
although that’s part of it. For a sequence to be cryptographically secure pseudo-random, it must
also have this property:

2. Itisunpredictable. It must be computationally infeasible to predict what the next random
bit will be, given complete knowledge of the algorithm or hardware generating the sequence
and all of the previous bitsin the stream.

Cryptographically secure pseudo-random sequences should not be compressible...unless you know
the key. The key is generally the seed used to set the initial state of the generator.

Like any cryptographic algorithm, cryptographically secure pseudo-random-sequence generators are
subject to attack. Just asit is possible to break an encryption algorithm, it is possible to break a
cryptographically secure pseudo-random-sequence generator. Making generators resistant to attack is
what cryptography is all about.

Real Random Sequences

Now we're drifting into the domain of philosophers. Is there such athing as randomness? What is a
random sequence? How do you know if a sequence is random? 1s"101110100" more random than
"101010101"? Quantum mechanics tells us that there is honest-to-goodness randomness in the real
world. But can we preserve that randomness in the deterministic world of computer chips and finite-
state machines?

Philosophy aside, from our point of view a sequence generator isreal random if it hasthis
additional third property:

3. It cannot be reliably reproduced. If you run the sequence generator twice with the exact

same input (at least as exact as humanly possible), you will get two completely unrelated
random sequences.

The output of agenerator satisfying these three properties will be good enough for a one-time pad,
key generation, and any other cryptographic applications that require a truly random sequence
generator. The difficulty isin determining whether a sequenceisrealy random. If | repeatedly
encrypt a string with DES and a given key, | will get a nice, random-looking output; you won't be
ableto tell that it’s nonrandom unless you rent time on the NSA’s DES cracker.

Chapter 3
Basic Protocols

3.1 Key Exchange

A common cryptographic technique is to encrypt each individual conversation with a separate key.
Thisis called a session key, becauseit is used for only one particular communications session. As
discussed in Section 8.5, session keys are useful because they only exist for the duration of the
communication. How this common session key gets into the hands of the conversants can be a
complicated matter.

Key Exchange with Symmetric Cryptography

This protocol assumes that Alice and Bob, users on a network, each share a secret key with the Key
Distribution Center (KDC) [1260]—Trent in our protocols. These keys must be in place before the
start of the protocol. (The protocol ignores the very real problem of how to distribute these secret
keys; just assume they are in place and Mallory has no idea what they are.)

(1) Alicecalls Trent and regquests a session key to communicate with Bob.

(2) Trent generates arandom session key. He encrypts two copies of it: onein Alice’' skey and
the other in Bob’skey. Trent sends both copiesto Alice.

(3) Alice decrypts her copy of the session key.

(4) Alice sends Bob his copy of the session key.

(5) Bob decrypts his copy of the session key.

(6) Both Alice and Bob use this session key to communicate securely.

This protocol relies on the absolute security of Trent, who is more likely to be a trusted computer
program than atrusted individual. If Mallory corrupts Trent, the whole network is compromised. He
has all of the secret keys that Trent shares with each of the users; he can read all past
communications traffic that he has saved, and all future communicationstraffic. All hehastodoisto
tap the communications lines and listen to the encrypted message traffic.

The other problem with this system isthat Trent is a potential bottleneck. He hasto beinvolved in
every key exchange. If Trent fails, that disrupts the entire system.

Key Exchange with Public-Key Cryptography

The basic hybrid cryptosystem was discussed in Section 2.5. Alice and Bob use public-key
cryptography to agree on a session key, and use that session key to encrypt data. In some practical
implementations, both Alice’s and Bob’ s signed public keys will be available on a database. This
makes the key-exchange protocol even easier, and Alice can send a secure message to Bob even if he
has never heard of her:

(1) AlicegetsBob’s public key from the KDC.

(2) Alice generates arandom session key, encryptsit using Bob's public key, and sendsit to
Bab.

(3) Bob then decrypts Alice’s message using his private key.

(4) Both of them encrypt their communications using the same session key.

Man-in-the-Middle Attack

While Eve cannot do better than try to break the public-key algorithm or attempt a ciphertext-only

attack on the ciphertext, Mallory is alot more powerful than Eve. Not only can he listen to messages
between Alice and Baob, he can also modify messages, del ete messages, and generate totally new
ones. Mallory can imitate Bob when talking to Alice and imitate Alice when talking to Bob. Here's
how the attack works:

(1) Alice sends Bob her public key. Mallory intercepts this key and sends Bob his own public
key.

(2) Bob sends Alice his public key. Mallory intercepts this key and sends Alice his own public
key.

(3) When Alice sends a message to Bob, encrypted in "Bob’s" public key, Mallory intercepts
it. Since the message is really encrypted with his own public key, he decryptsit with his
private key, re-encryptsit with Bob’s public key, and sends it on to Bob.

(4) When Bob sends a message to Alice, encrypted in "Alice's' public key, Mallory intercepts
it. Since the message is really encrypted with his own public key, he decryptsit with his
private key, re-encryptsit with Alice’ s public key, and sendsit on to Alice.

Evenif Alice’sand Bob's public keys are stored on a database, this attack will work. Mallory can
intercept Alice' s database inquiry and substitute his own public key for Bob’s. He can do the same to
Bob and substitute his own public key for Alice's. Or better yet, he can break into the database
surreptitiously and substitute his key for both Alice’'sand Bob’s. Then he simply waits for Alice and
Bob to talk with each other, intercepts and modifies the messages, and he has succeeded.

This man-in-the-middle attack works because Alice and Bob have no way to verify that they are
talking to each other. Assuming Mallory doesn’t cause any noticeable network delays, the two of
them have no idea that someone sitting between them isreading all of their supposedly secret
communications.

I nterlock Protocol

The interlock protocol, invented by Ron Rivest and Adi Shamir [1327], has a good chance of
foiling the man-in-the-middle attack. Here's how it works:

(1) Alice sends Bob her public key.

(2) Bob sends Alice his public key.

(3) Aliceencrypts her message using Bob's public key. She sends half of the encrypted
message to Bob.

(4) Bob encrypts his message using Alice’s public key. He sends half of the encrypted
message to Alice.

(5) Alice sendsthe other half of her encrypted message to Baob.

(6) Bob putsthe two halves of Alice's message together and decryptsit with his private key.
Bob sends the other half of his encrypted message to Alice.

(7) Alice putsthe two halves of Bob’s message together and decryptsit with her private key.

The important point is that half of the message is useless without the other half; it can’t be decrypted.
Bob cannot read any part of Alice’s message until step (6); Alice cannot read any part of Bob’'s
message until step (7). There are anumber of ways to do this:

— If the encryption algorithm is a block algorithm, half of each block (e.g., every other bit)
could be sent in each half message.

— Decryption of the message could be dependent on an initialization vector (see Section 9.3),
which could be sent with the second half of the message.

— Thefirst half of the message could be a one-way hash function of the encrypted message
(see Section 2.4) and the encrypted message itself could be the second half.

To see how this causes a problem for Mallory, let’ s review his attempt to subvert the protocol. He
can still substitute his own public keysfor Alice'sand Bob’s in steps (1) and (2). But now, when he
intercepts half of Alice’'s message in step (3), he cannot decrypt it with his private key and re-encrypt
it with Bob’s public key. He must invent atotally new message and send half of it to Bob. When he
intercepts half of Bob’s message to Alicein step (4), he has the same problem. He cannot decrypt it
with his private key and re-encrypt it with Alice' s public key. He hasto invent atotally new message
and send half of it to Alice. By the time he intercepts the second halves of the real messages in steps
(5) and (6), it istoo late for him to change the new messages he invented. The conversation between
Alice and Bob will necessarily be completely different.

Mallory could possibly get away with this scheme. If he knows Alice and Bob well enough to mimic
both sides of a conversation between them, they might never realize that they are being duped. But
surely thisis much harder than sitting between the two of them, intercepting and reading their

messages.
Key Exchange with Digital Signatures

Implementing digital signatures during a session-key exchange protocol circumvents this man-in-
the-middle attack as well. Trent signs both Alice’sand Bob's public keys. The signed keysinclude a
signed certification of ownership. When Alice and Bob receive the keys, they each verify Trent’s
signature. Now they know that the public key belongs to that other person. The key exchange
protocol can then proceed.

Mallory has serious problems. He cannot impersonate either Alice or Bob because he doesn’t know
either of their private keys. He cannot substitute his public key for either of theirs because, while he
has one signed by Trent, it is signed as being Mallory’s. All he can do is listen to the encrypted
traffic go back and forth or disrupt the lines of communication and prevent Alice and Bob from
talking.

This protocol uses Trent, but the risk of compromising the KDC is less than the first protocol. If
Mallory compromises Trent (breaksinto the KDC), all he getsis Trent’s private key. This key
enables him only to sign new keys; it does not let him decrypt any session keys or read any message
traffic. To read the traffic, Mallory has to impersonate a user on the network and trick legitimate
usersinto encrypting messages with his phony public key.

Mallory can launch that kind of attack. With Trent’s private key, he can create phony signed keys to
fool both Alice and Bob. Then, he can either exchange them in the database for real signed keys, or
he can intercept users' database requests and reply with his phony keys. This enables him to launch a
man-in-the-middle attack and read people’ s communications.

This attack will work, but remember that Mallory has to be able to intercept and modify messages. In
some networks thisis alot more difficult than passively sitting on a network reading messages as
they go by. On a broadcast channel, such as aradio network, it is almost impossible to replace one
message with another—although the entire network can be jammed. On computer networks thisis
easier and seems to be getting easier every day. Consider I1P spoofing, router attacks, and so forth;
active attacks don’'t necessarily mean someone down a manhole with a datascope, and they are not
limited to three-letter agencies.

Key and Message Transmission

Alice and Bob need not compl ete the key-exchange protocol before exchanging messages. In this
protocol, Alice sends Bob the message, M, without any previous key exchange protocol:

(1) Alice generates arandom session key, K, and encrypts M using K.

Ex(M)

(2) Alice gets Bob's public key from the database.

(3) Alice encrypts K with Bob’s public key.
EB(K)

(4) Alice sends both the encrypted message and encrypted session key to Bob.
Ex (M), Eg(K)

For added security against man-in-the-middle attacks, Alice can sign the transmission.
(5) Bob decrypts Alice' s session key, K, using his private key.
(6) Bob decrypts Alice's message using the session key.

This hybrid system is how public-key cryptography is most often used in a communications system.
It can be combined with digital signatures, timestamps, and any other security protocols.

Key and Message Broadcast

There is no reason Alice can’t send the encrypted message to several people. In thisexample, Alice
will send the encrypted message to Bob, Carol, and Dave:

(1) Alice generates arandom session key, K, and encrypts M using K.

Ex(M)
(2) AlicegetsBob's, Carol’s, and Dave's public keys from the database.
(3) Alice encrypts K with Bob’s public key, encrypts K with Carol’ s public key, and then
encrypts K with Dave's public key.

Eg(K), Ec(K), Ep(K)
(4) Alice broadcasts the encrypted message and all the encrypted keys to anybody who cares
to receiveit.

Eg(K), Ec(K), En(K), Ex(M)

(5) Only Bab, Carol, and Dave can decrypt the key, K, each using his or her private key.
(6) Only Bab, Carol, and Dave can decrypt Alice’'s message using K.

This protocol can be implemented on a store-and-forward network. A central server can forward
Alice s message to Bob, Carol, and Dave along with their particular encrypted key. The server
doesn’t have to be secure or trusted, since it will not be able to decrypt any of the messages.

3.2 Authentication

When Alice logsinto a host computer (or an automatic teller, or atelephone banking system, or any
other type of terminal), how does the host know who she is? How does the host know sheis not Eve
trying to falsify Alice’sidentity? Traditionally, passwords solve this problem. Alice enters her
password, and the host confirms that it is correct. Both Alice and the host know this secret piece of
knowledge and the host requestsit from Alice every time shetriestologin.

Authentication Using One-Way Functions

What Roger Needham and Mike Guy realized is that the host does not need to know the passwords,
the host just has to be able to differentiate valid passwords from invalid passwords. Thisis easy with
one-way functions [1599,526,1274,1121]. Instead of storing passwords, the host stores one-way
functions of the passwords.

(1) Alice sendsthe host her password.
(2) The host performs a one-way function on the password.

(3) The host compares the result of the one-way function to the value it previously stored.

Since the host no longer stores atable of everybody’s valid password, the threat of someone
breaking into the host and stealing the password list is mitigated. The list of passwords operated on
by the one-way function is useless, because the one-way function cannot be reversed to recover the
passwords.

Dictionary Attacks and Salt

A file of passwords encrypted with aone-way function is still vulnerable. In his spare time, Mallory
compiles alist of the 1,000,000 most common passwords. He operates on all 1,000,000 of them with
the one-way function and stores the results. If each password is about 8 bytes, the resulting file will
be no more than 8 megabytes; it will fit on afew floppy disks. Now, Mallory steals an encrypted
password file. He compares that file with his file of encrypted possible passwords and sees what
matches.

Thisisadictionary attack, and it’s surprisingly successful (see Section 8.1). Salt isaway to make
it more difficult. Salt is arandom string that is concatenated with passwords before being operated
on by the one-way function. Then, both the salt value and the result of the one-way function are
stored in a database on the host. If the number of possible salt valuesis large enough, this practically
eliminates adictionary attack against commonly used passwords because Mallory has to generate the
one-way hash for each possible salt value. Thisisasimple attempt at an initialization vector (see
Section 9.3).

The point hereisto make sure that Mallory has to do atrial encryption of each password in his
dictionary every time he tries to break another person’s password, rather than just doing one massive
precomputation for all possible passwords.

A lot of salt is needed. Most UNIX systems use only 12 bits of salt. Even with that, Daniel Klein
developed a password-guessing program that often cracks 40 percent of the passwords on a given
host system within aweek [847,848] (see Section 8.1). David Feldmeier and Philip Karn compiled a
list of about 732,000 common passwords concatenated with each of 4096 possible salt values. They
estimate that 30 percent of passwords on any given host can be broken with thislist [561].

Salt isn't a panacea; increasing the number of salt bits won't solve everything. Salt only protects
against general dictionary attacks on a password file, not against a concerted attack on asingle
password. It protects people who have the same password on multiple machines, but doesn’t make
poorly chosen passwords any better.

SKEY

SKEY isan authentication program that relies on a one-way function for its security. It’'s easy to
explain.

To set up the system, Alice enters arandom number, R. The computer computes f(R), f(f(R)), f(f(f
(R))), and so on, about a hundred times. Call these numbers X;, X,, X5,..., X;qo- The computer prints

out thislist of numbers, and Alice putsit in her pocket for safekeeping. The computer also stores
X101, IN the clear, in alogin database next to Alice’s name.

Thefirst time Alice wants to log in, she types her name and X, . The computer calculates f(x;)
and compares it with x,4; if they match, Alice is authenticated. Then, the computer replaces x;;
with x5, in the database. Alice crosses x,, off her list.

Every time Alice logs in, she enters the last uncrossed number on her list: x;. The computer
calculates f(x;) and comparesit with x; ; stored in its database. Eve can’t get any useful information

because each number is only used once, and the function is one-way. Similarly, the database is not
useful to an attacker. Of course, when Alice runs out of numbers on her list, she has to reinitialize the
system.

Authentication Using Public-Key Cryptography

Even with salt, the first protocol has serious security problems. When Alice sends her password to
her host, anyone who has access to her data path can read it. She might be accessing her host through
a convoluted transmission path that passes through four industrial competitors, three foreign
countries, and two forward-thinking universities. Eve can be at any one of those points, listening to
Alice slogin sequence. If Eve has access to the processor memory of the host, she can see the
password before the host hashes it.

Public-key cryptography can solve this problem. The host keeps afile of every user’s public key; all
users keep their own private keys. Here is a nasve attempt at a protocol. When logging in, the
protocol proceeds as follows:

(1) The host sends Alice arandom string.

(2) Aliceencryptsthe string with her private key and sends it back to the host, along with her
name.

(3) The host looks up Alice's public key in its database and decrypts the message using that
public key.

(4) If the decrypted string matches what the host sent Alice in the first place, the host allows
Alice access to the system.

No one else has access to Alice’ s private key, so no one else can impersonate Alice. More important,
Alice never sends her private key over the transmission line to the host. Eve, listening in on the
interaction, cannot get any information that would enable her to deduce the private key and
impersonate Alice.

The private key is both long and non-mnemonic, and will probably be processed automatically by
the user’ s hardware or communications software. This requires an intelligent terminal that Alice
trusts, but neither the host nor the communi cations path needs to be secure.

It isfoolish to encrypt arbitrary strings—not only those sent by untrusted third parties, but under any
circumstances at all. Attacks similar to the one discussed in Section 19.3 can be mounted. Secure
proof-of-identity protocols take the following, more complicated, form:

(1) Alice performs a computation based on some random numbers and her private key and
sends the result to the host.

(2) The host sends Alice a different random number.

(3) Alice makes some computation based on the random numbers (both the ones she
generated and the one she received from the host) and her private key, and sends the result to
the host.

(4) The host does some computation on the various numbers received from Alice and her
public key to verify that she knows her private key.

(5) If shedoes, her identity is verified.

If Alice does not trust the host any more than the host trusts Alice, then Alice will require the host to
prove itsidentity in the same manner.

Step (1) might seem unnecessary and confusing, but it is required to prevent attacks against the
protocol. Sections 21.1 and 21.2 mathematically describe several agorithms and protocols for
proving identity. See also [935].

Mutual Authentication Using the Interlock Protocol

Alice and Bob are two users who want to authenticate each other. Each of them has a password that
the other knows: Alice has P, and Bob has Py. Here's a protocol that will not work:

(1) Alice and Bob trade public keys.
(2) Aliceencrypts P, with Bob's public key and sendsit to him.

(3) Bob encrypts P with Alice’s public key and sendsiit to her.

(4) Alice decryptswhat shereceived in step (2) and verifiesthat it is correct.
(5) Bob decryptswhat he received in step (3) and verifiesthat it is correct.

Mallory can launch a successful man-in-the-middle attack (see Section 3.1):

(1) Aliceand Bob trade public keys. Mallory intercepts both messages. He substitutes his
public key for Bob’s and sendsiit to Alice. Then he substitutes his public key for Alice’'sand
sendsit to Bob.

(2) Aliceencrypts P, with "Bob’s" public key and sendsit to him. Mallory intercepts the

message, decrypts P, with his private key, re-encryptsit with Bob’s public key and sendsit on

to him.
(3) Bob encrypts Pg with "Alice’s" public key and sendsit to her. Malory intercepts the

message, decrypts Pg with his private key, re-encrypts it with Alice’s public key, and sends it
on to her.

(4) Alice decrypts Pg and verifiesthat it is correct.

(5) Bob decrypts P, and verifiesthat it is correct.

Alice and Bob see nothing different. However, Mallory knows both P, and Pg.

Donald Davies and Wyn Price describe how the interlock protocol (described in Section 3.1) can
defeat this attack [435]. Steve Bellovin and Michael Merritt discuss ways to attack this protocol
[110]. If Aliceisauser and Bob isahost, Mallory can pretend to be Bob, complete the beginning
steps of the protocol with Alice, and then drop the connection. True artistry demands Mallory do this
by simulating line noise or network failure, but the final result isthat Mallory has Alice’ s password.
He can then connect with Bob and complete the protocol, thus getting Bob’ s password, too.

The protocol can be modified so that Bob gives his password before Alice, under the assumption that
the user’ s password is much more sensitive than the host’ s password. Thisfallsto amore
complicated attack, also described in [110].

SKID

SKI1D2 and SKI1D3 are symmetric cryptography identification protocols devel oped for RACE’s RIPE
project [1305] (See Section 25.7). They use aMAC (see Section 2.4) to provide security and both
assume that both Alice and Bob share a secret key, K.

SKI1D2 allows Bob to prove hisidentity to Alice. Here' s the protocol:

(1) Alice chooses arandom number, R, . (The RIPE document specifies a 64-bit number). She

sendsit to Bob.
(2) Bob chooses arandom number, Rg. (The RIPE document specifies a 64-bit number). He

sends Alice:

Hy isthe MAC. (The RIPE document suggests the RIPE-MAC function—see Section 18.14.)

B isBob’s name.
(3) Alice computes H, (R5;Rg,B) and comparesit with what she received from Bob. If the

results are identical, then Alice knows that she is communicating with Bob.

SKI1D3 provides mutual authentication between Alice and Bob. Steps (1) through (3) are identical to
SKI1D2, and then the protocol proceeds with:

(4) Alice sends Bob:
H (Rg.A)

AisAlice s name.
(5) Bob computes H,(Rg,A), and compares it with what he received from Alice. If the results

areidentical, then Bob knows that he is communicating with Alice.

This protocol is not secure against a man-in-the-middle attack. In general, a man-in-the-middle
attack can defeat any protocol that doesn’'t involve a secret of some kind.

Message Authentication

When Bob receives a message from Alice, how does he know it is authentic? If Alice signed her
message, thisis easy. Alice sdigital signature is enough to convince anyone that the message is
authentic.

Symmetric cryptography provides some authentication. When Bob receives a message from Alice
encrypted in their shared key, he knowsiit isfrom Alice. No one else knows their key. However, Bob
has no way of convincing athird party of thisfact. Bob can’t show the message to Trent and
convince him that it came from Alice. Trent can be convinced that the message came from either
Alice or Bob (since no one else shared their secret key), but he has no way of knowing which one.

If the message is unencrypted, Alice could also use aMAC. This also convinces Bob that the
message is authentic, but has the same problems as symmetric cryptography solutions.

3.3 Authentication and Key Exchange

These protocols combine authentication with key exchange to solve a general computer problem:
Alice and Bob are on opposite ends of a network and want to talk securely. How can Alice and Bob
exchange a secret key and at the same time each be sure that he or she is talking to the other and not
to Mallory? Most of the protocols assume that Trent shares a different secret key with each
participant, and that all of these keys are in place before the protocol begins.

The symbols used in these protocols are summarized in Table 3.1.

Wide-Mouth Frog

The Wide-Mouth Frog protocol [283,284] is probably the simplest symmetric key-management
protocol that uses atrusted server. Both Alice and Bob share a secret key with Trent. The keys are
just used for key distribution and not to encrypt any actual messages between users. Just by using
two messages, Alice transfers a session key to Bob:

TABLE 3.1
Symbolsused in authentication and key exchange protocols

Alice sname
Bob’s name
Encryption with akey Trent shareswith Alice

Encryption with akey Trent shares with Bob

Index number

A random session key
Lifetime

TaTg A timestamp

rxX—- mmmw >
W >

Ra,Rg A random number, sometimes called a nonce, chosen by Alice and Bob respectively

(1) Alice concatenates atimestamp, Bob's name, and a random session key and encrypts the
whole message with the key she shares with Trent. She sends this to Trent, along with her
name.

AEL(T4,B.K)

(2) Trent decryptsthe message from Alice. Then he concatenates a new timestamp, Alice’s
name, and the random session key; he encrypts the whole message with the key he shares with
Bob. Trent sends to Bob:

Eg(TgAK)

The biggest assumption made in this protocol isthat Alice is competent enough to generate good
session keys. Remember that random numbers aren’t easy to generate; it might be more than Alice
can be trusted to do properly.

Yahalom
In this protocol, both Alice and Bob share a secret key with Trent [283,284].

(1) Alice concatenates her name and arandom number, and sendsit to Bob.
AR,
(2) Bob concatenates Alice’'s name, Alice's random number, his own random number, and
encryptsit with the key he shares with Trent. He sends this to Trent, along with his name.
B.Eg(AR,.Rp)
(3) Trent generates two messages. The first consists of Bob's name, arandom session key,
Alice s random number, and Bob’s random number, al encrypted with the key he shares with

Alice. The second consists of Alice’'s Zname and the random session key, encrypted with the
key he shares with Bob. He sends both messagesto Alice.

EA(B,K,Ry,R5).Eg(AK)
(4) Alice decrypts the first message, extracts K, and confirmsthat R, has the same value asiit
didin step (1). Alice sends Bob two messages. Thefirst is the message received from Trent,

encrypted with Bob’s key. The second is R, encrypted with the session key.
(5) Bob decrypts the message encrypted with hiskey, extracts K, and confirms that R has the
samevaueasit didin step (2).

At the end, Alice and Bob are each convinced that they are talking to the other and not to athird
party. The novelty hereisthat Bob isthe first one to contact Trent, who only sends one message to
Alice.

Needham-Schroeder

This protocol, invented by Roger Needham and Michael Schroeder [1159], also uses symmetric
cryptography and Trent.

(1) Alice sends amessage to Trent consisting of her name, Bob’s name, and arandom
number.
ABR,

(2) Trent generates arandom session key. He encrypts a message consisting of a random
session key and Alice’ s name with the secret key he shares with Bob. Then he encrypts Alice’s
random value, Bob’'s name, the key, and the encrypted message with the secret key he shares
with Alice. Finally, he sends her the encrypted message:

En(Ry.B.KEg(KA)

(3) Alice decrypts the message and extracts K. She confirms that RA is the same value that
she sent Trent in step (1). Then she sends Bob the message that Trent encrypted in his key.
Er(K,A)
B

(4) Bob decrypts the message and extracts K. He then generates another random value, R5. He

encrypts the message with K and sendsiit to Alice.

Ex(Rg)
K
(5) Alice decrypts the message with K. She generates R - 1 and encryptsit with K. Then she
sends the message back to Bob.
Ec(Rg-1)
(6) Bob decrypts the message with K and verifiesthat itisRg - 1.

All of thisfussing around with R, and Ry and Ry - 1 isto prevent replay attacks. In this attack,

Mallory can record old messages and then use them later in an attempt to subvert the protocol. The
presence of R, in step (2) assures Alice that Trent’s message is legitimate and not areplay of a

response from a previous execution of the protocol. When Alice successfully decrypts Ry and sends
Bob Ry - 1in step (5), Bob is ensured that Alice’s messages are not replays from an earlier execution
of the protocal.

The major security hole in this protocol isthat old session keys are valuable. If Mallory gets access
to an old K, he can launch a successful attack [461]. All he hasto do is record Alice’ s messages to
Bob in step (3). Then, once he has K, he can pretend to be Alice:

(1) Mallory sends Bob the following message:
Eg(K,A)
(2) Bob extractsK, generates Ry, and sends Alice:

Ex(Rg)

(3) Malory intercepts the message, decryptsit with K, and sends Bob:

Ec(Rg-1)
(4) Bob verifiesthat "Alice's' messageis Ry - 1.

Now, Mallory has Bob convinced that heis Alice.

A stronger protocol, using timestamps, can defeat this attack [461,456]. A time-stamp is added to
Trent’s message in step (2) encrypted with Bob'skey: Eg(K,A,T). Timestamps require a secure and

accurate system clock—not atrivial problem in itself.

If the key Trent shares with Aliceis ever compromised, the consequences are drastic. Mallory can
use it to obtain session keys to talk with Bob (or anyone else he wishes to talk to). Even worse,
Mallory can continue to do this even after Alice changes her key [90].

Needham and Schroeder attempted to correct these problems in a modified version of their protocol
[1160]. Their new protocol is essentially the same as the Otway-Rees protocol, published in the same
issue of the same journal.

Otway-Rees
This protocol also uses symmetric cryptography [1224].

(1) Alice generates a message consisting of an index number, her name, Bob’s name, and a
random number, al encrypted in the key she shares with Trent. She sends this message to Bob
along with the index number, her name, and his name:

|LAB,E(Ry.1A,B)

(2) Bob generates a message consisting of a new random number, the index number, Alice’s

name, and Bob’s name, al encrypted in the key he shares with Trent. He sendsiit to Trent,

along with Alice' s encrypted message, the index number, her name, and his name:
1LAB,E,(Ry:1,A,B),E5(Rg.1,A,B)

(3) Trent generates arandom session key. Then he creates two messages. Oneis Alice's

random number and the session key, encrypted in the key he shares with Alice. The other is

Bob’ s random number and the session key, encrypted in the key he shares with Bob. He sends

these two messages, along with the index number, to Bob:

(4) Bob sends Alice the message encrypted in her key, along with the index number:

(5) Alice decrypts the message to recover her key and random number. She then confirms that

both have not changed in the protocol.

Assuming that all the random numbers match, and the index number hasn’t changed along the way,

Alice and Bob are now convinced of each other’ sidentity, and they have a secret key with which to
communicate.

Kerberos
Kerberosis avariant of Needham-Schroeder and is discussed in detail in Section 24.5. In the basic
Kerberos Version 5 protocol, Alice and Bob each share keys with Trent. Alice wants to generate a

session key for a conversation with Bob.

(1) Alice sends a message to Trent with her identity and Bob’s identity.

AB
(2) Trent generates a message with atimestamp, alifetime, L, arandom session key, and
Alice sidentity. He encrypts thisin the key he shares with Bob. Then he takes the timestamp,
the lifetime, the session key, and Bob'’ sidentity, and encrypts these in the key he shares with
Alice. He sends both encrypted messages to Alice.

EA(T,L,K,B),EB(T,L,K,A)
() Alice generates a message with her identity and the timestamp, encryptsit in K, and sends
it to Bob. Alice also sends Bob the message encrypted in Bob' s key from Trent.

Ec(AT),Eg(T.LKA)

(4) Bob creates a message consisting of the timestamp plus one, encryptsit in K, and sends it
to Alice.
E (T+1)

This protocol works, but it assumes that everyone's clocks are synchronized with Trent’s clock. In
practice, the effect is obtained by synchronizing clocks to within afew minutes of a secure time
server and detecting replays within the time interval.

Neuman-Stubblebine

Whether by system faults or by sabotage, clocks can become unsynchronized. If the clocks get out of
sync, there is a possible attack against most of these protocols [644]. If the sender’s clock is ahead of
the receiver’s clock, Mallory can intercept a message from the sender and replay it later when the
timestamp becomes current at the receiver’ s site. This attack is called suppress-replay and can have
irritating consequences.

This protocol, first presented in [820] and corrected in [1162] attempts to counter the suppress-replay
attack. It is an enhancement to Y ahalom and is an excellent protocol.

(1) Alice concatenates her name and arandom number and sends it to Bob.
AR
A

(2) Bob concatenates Alice' s name, her random number, and a timestamp, and encrypts with
the key he shares with Trent. He sends it to Trent along with his name and a new random
number.

B,Rg.Eg(AR,,Tp)
(3) Trent generates arandom session key. Then he creates two messages. The first isBob’s
name, Alice’s random number, arandom session key, and the timestamp, al encrypted with
the key he shares with Alice. The second is Alice’ s name, the session key, and the timestamp,
all encrypted with the key he shares with Bob. He sends these both to Alice, along with Bob's
random number.

EA(BRy.K,Tg).EA(AK,T5),Ry

(4) Alice decrypts the message encrypted with her key, extracts K, and confirmsthat R, has

the same value asit did in step (1). Alice sends Bob two messages. Thefirst is the message
received from Trent, encrypted with Bob’skey. The second is Ry, encrypted with the session

key.

(5) Bob decrypts the message encrypted with his key, extracts K, and confirmsthat T and Ry
have the same value they did in step (2).

Assuming both random numbers and the timestamp match, Alice and Bob are convinced of one
another’ sidentity and share a secret key. Synchronized clocks are not required because the
timestamp is only relative to Bob’'s clock; Bob only checks the timestamp he generated himself.

One nice thing about this protocol is that Alice can use the message she received from Trent for
subsequent authentication with Bob, within some predetermined time limit. Assume that Alice and
Bob completed the above protocol, communicated, and then terminated the connection. Alice and
Bob can reauthenticate in three steps, without having to rely on Trent.

(1) Alice sends Bob the message Trent sent her in step (3) and a new random number.
Eg(AKTR).R 5

(2) Bob sends Alice another new random number, and Alice’ s new random number encrypted
in their session key.
RgEc(Ra)
(3) Alice sends Bob his new random number, encrypted in their session key.
Ex(Rp)
K\"" B

The new random numbers prevent replay attacks.

DASS

The Distributed Authentication Security Service (DASS) protocols, developed at Digital Equipment
Corporation, also provide for mutual authentication and key exchange [604,1519,1518]. Unlike the
previous protocols, DASS uses both public-key and symmetric cryptography. Alice and Bob each
have a private key. Trent has signed copies of their public keys.

(1) Alice sends amessage to Trent, consisting of Bob's name.

(2) Trent sends Alice Bob's public key, Ky, signed with Trent’s private key, T. The signed
message includes Bob' s name.

Sr{B.Kg)

(3) Aliceverifies Trent’s signature to confirm that the key she received is actually Bob's
public key. She generates arandom session key, and arandom public-key/private-key key
pair: Kp. She encrypts atimestamp with K. Then she signs akey lifetime, L, her name, and K

with her private key, KA. Finally, she encrypts K with Bob's public key, and signsit with K.
She sends all of thisto Bob.
EK(TA).SKA(L,A,KP)&P(EKB(K))

(4) Bob sends amessage to Trent (this may be adifferent Trent), consisting of Alice’ s name.

(5) Trent sends Bob Alice's public key, signed in Trent’s private key. The signed message
includes Alice’ s name.

SHAK,)
(6) Bob verifies Trent’ s signature to confirm that the key he received is actually Alice s public
key. He then verifies Alice's signature and recovers K. He verifies the signature and uses his

private key to recover K. Then he decrypts T, to make sure thisis a current message.

(7) If mutual authentication is required, Bob encrypts a new timestamp with K, and sendsit to
Alice.

Ex(Tg)
K\'B
(8) Alice decrypts Ty with K to make sure that the message is current.

SPX, aproduct by DEC, is based on DASS. Additional information can be found in [34].

Denning-Sacco

This protocol also uses public-key cryptography [461]. Trent keeps a database of everyone's public
keys.

(1) Alice sends a message to Trent with her identity and Bob’s identity:
AB
(2) Trent sends Alice Bob's public key, Kg, signed with Trent’s private key, T. Trent also

sends Alice her own public key, K,, signed with his private key.

(3) Alice sends Bob arandom session key and a timestamp, signed in her private key and
encrypted in Bob's public key, along with both signed public keys.

(4) Bob decrypts Alice’'s message with his private key and then verifies Alice’ s signature with
her public key. He checks to make sure that the timestamp is till valid.

At this point both Alice and Bob have K, and can communicate securely.

Thislooks good, but it isn't. After completing the protocol with Alice, Bob can then masguerade as
Alice[5]. Watch:

(1) Bob sends his name and Carol’s nameto Trent
B,C
(2) Trent sends Bob both Bob’s and Carol’ s signed public keys.
(3) Bob sends Carol the signed session key and timestamp he previously received from Alice,
encrypted with Carol’ s public key, along with Alice's certificate and Carol’ s certificate.

Ec(SA(K.Tp).SHAK,).SH{CKC)
(4) Carol decrypts Alice’'s message with her private key and then verifies Alice s signature
with her public key. She checks to make sure that the timestamp is till valid.

Carol now thinks sheistalking to Alice; Bob has successfully fooled her. In fact, Bob can fool
everyone on the network until the timestamp expires.

Thisis easy to fix. Add the names inside the encrypted message in step (3):

Now Bob can’t replay the old message to Carol, because it is clearly meant for communication
between Alice and Baob.

Woo-Lam
This protocol also uses public-key cryptography [1610,1611]:

(1) Alice sends a message to Trent with her identity and Bob’s identity:
AB
(2) Trent sends Alice Bob's public key, Kg, signed with Trent's private key, T.
Sr(Kp)
(3) Aliceverifies Trent’s signature. Then she sends Bob her name and a random number,
encrypted with Bob’s public key.
Exg(AR,)
(4) Bob sends Trent his name, Alice’ s name, and Alice' s random number encrypted with

Trent's public key, K.
ABE,1(Ry)
(5) Trent sends Bob Alice's public key, K, signed with Trent’s private key. He also sends

him Alice' s random number, a random session key, Alice’ s name, and Bob’s name, all signed
with Trent’s private key and encrypted with Bob's public key.

ST(KA),EKB(ST(RAK,AB))
(6) Bob verifies Trent’ s signatures. Then he sends Alice the second part of Trent’s message
from step (5) and a new random number—all encrypted in Alice’ s public key.

EKA(ST(RAJK;A!B)lRB)
(7) Alice verifies Trent’s signature and her random number. Then she sends Bob the second
random number, encrypted in the session key.

Ex(Rp)

(8) Bob decrypts his random number and verifies that it unchanged.
Other Protocols

There are many other protocolsin the literature. The X.509 protocols are discussed in Section 24.9,
KryptoKnight is discussed in Section 24.6, and Encrypted Key Exchange is discussed in Section
22.5.

Another new public-key protocol is Kuperee [694]. And work is being done on protocols that use
beacons, atrusted node on a network that continuously broadcasts authenticated nonces [783].

Lessons Learned

There are some important lessons in the previous protocols, both those which have been broken and
those which have not:

— Many protocols failed because the designers tried to be too clever. They optimized their
protocols by leaving out important pieces. names, random numbers, and so on. The remedy is
to make everything explicit [43,44].

— Trying to optimize is an absolute tar pit and depends a whole lot on the assumptions you
make. For example: If you have authenticated time, you can do awhole lot of things you can’t
doif you don't.

— The protocol of choice depends on the underlying communications architecture. Do you
want to minimize the size of messages or the number of messages? Can all parties talk with
each other or can only afew of them?

It's questions like these that |ed to the development of formal methods for analyzing protocols.
3.4 Formal Analysis of Authentication and K ey-Exchange Protocols

The problem of establishing secure session keys between pairs of computers (and people) on a
network is so fundamental that it has led to a great deal of research. Some of the research focused on
the development of protocols like the ones discussed in Sections 3.1, 3.2, and 3.3. This, in turn, has
led to a greater and more interesting problem: the formal analysis of authentication and key-
exchange protocols. People have found flaws in seemingly secure protocols years after they were
proposed, and researchers wanted tools that could prove a protocol’ s security from the start.
Although much of thiswork can apply to general cryptographic protocols, the emphasisin research
isamost exclusively on authentication and key exchange.

There are four basic approaches to the analysis of cryptographic protocols [1045]:

1. Model and verify the protocol using specification languages and verification tools not
specifically designed for the analysis of cryptographic protocols.

2. Develop expert systems that a protocol designer can use to develop and investigate
different scenarios.

3. Modé the requirements of a protocol family using logics for the analysis of knowledge and
belief.

4. Develop aformal method based on the algebraic term-rewriting properties of cryptographic
systems.

A full discussion on these four approaches and the research surrounding them is well beyond the
scope of this book. See [1047,1355] for a good introduction to the topic; | am only going to touch on
the major contributions to the field.

The first approach treats a cryptographic protocol as any other computer program and attempts to
prove correctness. Some researchers represent a protocol as afinite-state machine [1449,1565],
others use extensions of first-order predicate calculus[822], and still others use specification
languages to analyze protocols [1566]. However, proving correctness is not the same as proving
security and this approach fails to detect many flawed protocols. Although it was widely studied at
first, most of the work in this area has been redirected as the third approach gained popularity.

The second approach uses expert systems to determine if a protocol can reach an undesirable state
(the leaking of a key, for example). While this approach better identifies flaws, it neither guarantees
security nor provides techniques for developing attacks. It is good at determining whether a protocol
contains a given flaw, but is unlikely to discover unknown flaws in a protocol. Examples of this
approach can be found in [987,1521]; [1092] discusses arule-based system developed by the U.S.
military, called the Interrogator.

The third approach is by far the most popular, and was pioneered by Michael Burrows, Martin
Abadi, and Roger Needham. They developed aformal logic model for the analysis of knowledge and
belief, called BAN logic [283,284]. BAN logic is the most widely used logic for analyzing
authentication protocols. It assumes that authentication is afunction of integrity and freshness, and
uses logical rulesto trace both of those attributes through the protocol. Although many variants and
extensions have been proposed, most protocol designers still refer back to the original work.

BAN logic doesn’'t provide a proof of security; it can only reason about authentication. It hasa
simple, straightforward logic that is easy to apply and still useful for detecting flaws. Some of the
statementsin BAN logic include:

Alice believes X. (Alice acts as though X istrue.)

Alice sees X. (Someone has sent a message containing X to Alice, who can read and
repeat X—possibly after decrypting it.)

Alice said X. (At sometime, Alice sent a message that includes the statement X. It is not
known how long ago the message was sent or even that it was sent during the current
run of the protocal. It is known that Alice believed X when she said it.)

X isfresh. (X has not been sent in a message at any time before the current run of the
protocol.)

And so on. BAN logic also provides rules for reasoning about belief in aprotocol. These rules can
then be applied to the logical statements about the protocol to prove things or answer questions about
the protocol. For example, one rule is the message-meaning rule:

IF Alice believes that Alice and Bob share a secret key, K, and Alice sees X, encrypted
under K, and Alice did not encrypt X under K, THEN Alice believes that Bob once said
X.

Another ruleis the nonce-verification rule:

IF Alice believes that X could have been uttered only recently and that Bob once said X,
THEN Alice believes that Bob believes X.

There are four stepsin BAN analysis:

(1) Convert the protocol into idealized form, using the statements previously described.

(2) Add all assumptions about the initial state of the protocol.

(3) Attach logica formulasto the statements: assertions about the state of the system after
each statement.

(4) Apply thelogical postulates to the assertions and assumptions to discover the beliefs held
by the parties in the protocol.

The authors of BAN logic "view the idealized protocols as clearer and more complete specifications
than traditional descriptions found in the literature...." [283,284]. Others are not so impressed and
criticize this step because it may not accurately reflect the real protocol [1161,1612]. Further debate
isin[221,1557]. Other criticstry to show that BAN logic can deduce characteristics about protocols
that are obvioudly false [1161]—see [285,1509] for arebuttal—and that BAN logic deals only with
trust and not security [1509]. More debate isin [1488,706,1002].

Degspite these criticisms, BAN logic has been a success. It has found flaws in several protocols,
including Needham-Schroeder and an early draft of a CCITT X.509 protocol [303]. It has uncovered
redundancies in many protocols, including Y ahalom, Needham-Schroeder, and Kerberos. Many
published papers use BAN logic to make claims about their protocol’ s security [40,1162,73].

Other logic systems have been published, some designed as extensionsto BAN logic
[645,586,1556,828] and others based on BAN to correct perceived weaknesses [1488,1002]. The
most successful of theseis GNY [645], although it has some shortcomings [40]. Probabalistic beliefs
were added to BAN logic, with mixed success, by [292,474]. Other formal logics are [156,798,288];
[1514] attempts to combine the features of several logics. And [1124,1511] present logics where
beliefs can change over time.

The fourth approach to the analysis of cryptographic protocols models the protocol as an algebraic
system, expresses the state of the participants knowledge about the protocol, and then analyzes the
attainability of certain states. This approach has not received as much attention as formal logics, but
that is changing. It was first used by Michael Merritt [1076], who showed that an algebraic model
can be used to analyze cryptographic protocols. Other approaches arein
[473,1508,1530,1531,1532,1510,1612].

The Navy Research Laboratory’s (NRL) Protocol Analyzer is probably the most successful
application of these techniques [1512,823,1046,1513]; it has been used to discover both new and
known flawsin avariety of protocols [1044,1045,1047]. The Protocol Analyzer defines the
following actions:

— Accept (Bob, Alice, M, N). (Bob accepts the message M as from Alice during Bob's local
round N.)

— Learn (Eve, M). (Evelearns M.)

— Send (Alice, Bob, Q, M). (Alice sends M to Bob in response toquery, Q.)

— Request (Bob, Alice, Q, N). (Bob sends Q to Alice during Bob’s local round N.)

From these actions, requirements can be specified. For example:

— If Bob accepted message M from Alice at some point in the past, then Eve did not learn M
at some point in the past.

— |If Bob accepted message M from Alicein Bob'slocal round N, then Alice sent M to Bob as
aresponse to aquery in Bob'slocal round N.

To use the NRL Protocol Analyzer, a protocol must be specified using the previous constructs. Then,
there are four phases of analysis: defining transition rules for honest participants, describing
operations available to all—honest and dishonest—participants, describing the basic building blocks
of the protocol, and describing the reduction rules. The point of all thisisto show that a given
protocol meetsits requirements. Tools like the NRL Protocol Analyzer could eventually lead to a
protocol that can be proven secure.

While much of the work in formal methods involves applying the methods to existing protocols,
there is some push towards using formal methods to design the protocolsin the first place. Some
preliminary stepsin thisdirection are [711]. The NRL Protocol Analyzer also attempts to do this
[1512,222,1513].

The application of formal methods to cryptographic protocolsis still afairly new ideaand it’sredly
hard to figure out where it is headed. At this point, the weakest link seems to be the formalization
process.

3.5 Multiple-Key Public-Key Cryptography

Public-key cryptography uses two keys. A message encrypted with one key can be decrypted with
the other. Usually one key is private and the other is public. However, let’ s assume that Alice has
one key and Baob has the other. Now Alice can encrypt a message so that only Bob can decrypt it,

and Bob can encrypt a message so that only Alice can read it.

This concept was generalized by Colin Boyd [217]. Imagine a variant of public-key cryptography
with three keys: K,, Kg, and K, distributed as shown in Table 3.2.

Alice can encrypt a message with K, so that Ellen, with K5 and K, can decrypt it. So can Bob and

Carol in collusion. Bob can encrypt a message so that Frank can read it, and Carol can encrypt a
message so that Dave can read it. Dave can encrypt a message with K, so that Ellen can read it, with

Kg so that Frank can read it, or with both K, and K so that Carol can read it. Similarly, Ellen can

encrypt amessage so that either Alice, Dave, or Frank can read it. All the possible combinations are
summarized in Table 3.3; there are no other ones.

TABLE 3.2
Three-Key Key Distribution

Alice Ka
Bob KB
Carol Ke
Dave K, and Kg
Ellen Kg and K-

Frank KC and K A

This can be extended to n keys. If a given subset of the keys is used to encrypt the message, then the
other keys are required to decrypt the message.

Broadcasting a Message

Imagine that you have 100 operatives out in the field. Y ou want to be able to send messages to
subsets of them, but don’t know which subsets in advance. Y ou can either encrypt the message
separately for each person or give out keys for every possible combination of people. The first option
requires alot of messages; the second requires alot of keys.

Multiple-key cryptography is much easier. We'll use three operatives: Alice, Bob, and Carol. You
give AliceK, and Kg, Bob K and K, and Carol K~ and K. Now you can talk to any subset you

want. If you want to send a message so that only Alice can read it, encrypt it with K. When Alice
receives the message, she decryptsit with K, and then K. If you want to send a message so that
only Bob can read it, encrypt it with K, ; so that only Carol can read it, with K. If you want to send
amessage so that both Alice and Bob can read it, encrypt it with K, and K, and so on.

This might not seem exciting, but with 100 operativesit is quite efficient. Individual messages mean
ashared key with each operative (100 keys total) and each message. Keys for every possible subset

means 2190 - 2 different keys (messagesto all operatives and messages to no operatives are
excluded). This scheme needs only one encrypted message and 100 different keys. The drawback of
this scheme is that you also have to broadcast which subset of operatives can read the message,
otherwise each operative would have to try every combination of possible keys looking for the
correct one. Even just the names of the intended recipients may be significant. At least for the
straightforward implementation of this, everyone gets areally large amount of key data.

There are other techniques for message broadcasting, some of which avoid the previous problem.
These are discussed in Section 22.7.

TABLE 3.3
Three-Key Message Encryption

Encrypted with Keys: Must be Decrypted with Keys:

Ka Kg and K
Kg Ky and K
Ke K, and Kg
K, and (B Ke
Ky and K¢ Kg
Kg and K~ Ka

3.6 Secret Splitting

Imagine that you’ ve invented a new, extra gooey, extra sweet, cream filling or aburger sauce that is
even more tastel ess than your competitors' . Thisisimportant; you have to keep it secret. Y ou could

tell only your most trusted employees the exact mixture of ingredients, but what if one of them
defects to the competition? There goes the secret, and before long every grease palace on the block
will be making burgers with sauce as tastel ess as yours.

This callsfor secret splitting. There are ways to take a message and divide it up into pieces [551].
Each piece by itself means nothing, but put them together and the message appears. If the messageis
the recipe and each employee has a piece, then only together can they make the sauce. If any
employee resigns with his single piece of the recipe, hisinformation is useless by itself.

The ssimplest sharing scheme splits a message between two people. Here' s a protocol in which Trent
can split a message between Alice and Bob:

(1) Trent generates arandom-bit string, R, the same length as the message, M.
(2) Trent XORs M with Rto generate S.

MOR=S
(3) Trent givesRto Alice and Sto Bob.

To reconstruct the message, Alice and Bob have only one step to do:

(4) Alice and Bob XOR their pieces together to reconstruct the message:
ROS=M

Thistechnigue, if done properly, is absolutely secure. Each piece, by itself, is absolutely worthless.
Essentially, Trent is encrypting the message with a one-time pad and giving the ciphertext to one
person and the pad to the other person. Section 1.5 discusses one-time pads; they have perfect
security. No amount of computing power can determine the message from one of the pieces.

It is easy to extend this scheme to more people. To split a message among more than two people,
XOR more random-bit strings into the mixture. In this example, Trent divides up a message into four
pieces:

(1) Trent generates three random-bit strings, R, S, and T, the same length as the message, M.
(2) Trent XORs M with the three strings to generate U:

MOROSOT=U
(3) Trent givesRto Alice, Sto Bob, T to Carol, and U to Dave.

Alice, Bab, Carol, and Dave, working together, can reconstruct the message:

(4) Alice, Bob, Caral, and Dave get together and compute:
ROSOTOU=M

Thisis an adjudicated protocol. Trent has absolute power and can do whatever he wants. He can
hand out gibberish and claim that it isavalid piece of the secret; no one will know it until they try to
reconstruct the secret. He can hand out a piece to Alice, Bab, Carol, and Dave, and later tell
everyone that only Alice, Carol, and Dave are needed to reconstruct the secret, and then fire Bob.
But since thisis Trent’s secret to divide up, thisisn’t a problem.

However, this protocol has a problem: If any of the pieces gets lost and Trent isn’t around, so does
the message. If Carol, who has a piece of the sauce recipe, goes to work for the competition and
takes her piece with her, the rest of them are out of luck. She can’t reproduce the recipe, but neither
can Alice, Bob, and Dave working together. Her pieceis as critical to the message as every other
piece combined. All Alice, Bob, or Dave know is the length of the message—nothing more. Thisis
truebecause R, S T, U, and M all have the same length; seeing anyone of them gives the length of

M. Remember, M isn’'t being split in the normal sense of the word; it is being XORed with random
values.

3.7 Secret Sharing

Y ou're setting up alaunch program for a nuclear missile. Y ou want to make sure that no single
raving lunatic can initiate alaunch. Y ou want to make sure that no two raving lunatics can initiate a
launch. Y ou want at least three out of five officersto be raving lunatics before you allow alaunch.

Thisis easy to solve. Make amechanical launch controller. Give each of the five officers akey and
require that at least three officers stick their keys in the proper slots before you'll allow them to blow
up whomever we' re blowing up this week. (If you're really worried, make the slots far apart and
require the officers to insert the keys simultaneously—you wouldn’t want an officer who steals two
keysto be able to vaporize Toledo.)

We can get even more complicated. Maybe the general and two colonels are authorized to launch the
missile, but if the general is busy playing golf then five colonels are required to initiate a launch.
Make the launch controller so that it requires five keys. Give the general three keys and the colonels
one each. The general together with any two colonels can launch the missile; so can the five
colonels. However, a general and one colonel cannot; neither can four colonels.

A more complicated sharing scheme, called athreshold scheme, can do al of this and more—
mathematically. At its simplest level, you can take any message (a secret recipe, launch codes, your
laundry list, etc.) and divide it into n pieces, called shadows or shares, such that any m of them can
be used to reconstruct the message. More precisely, thisis called an (m,n)-threshold scheme.

With a (3,4)-threshold scheme, Trent can divide his secret sauce recipe among Alice, Bob, Caral,
and Dave, such that any three of them can put their shadows together and reconstruct the message. If
Carol ison vacation, Alice, Bob, and Dave can do it. If Bob gets run over by a bus, Alice, Carol, and
Dave can do it. However, if Bob gets run over by abuswhile Carol is on vacation, Alice and Dave
can't reconstruct the message by themselves.

General threshold schemes are even more versatile. Any sharing scenario you can imagine can be
modeled. Y ou can divide a message among the people in your building so that to reconstruct it, you
need seven people from the first floor and five people from the second floor, unless there is someone
from the third floor involved, in which case you only need that person and three people from the first
floor and two people from the second floor, unless there is someone from the fourth floor involved,
in which case you need that person and one person from the third floor, or that person and two
people from the first floor and one person from the second floor, unless thereis...well, you get the
idea.

Thisideawas invented independently by Adi Shamir [1414] and George Blakley [182] and studied
extensively by Gus Simmons [1466]. Several different algorithms are discussed in Section 23.2.

Secret Sharing with Cheaters
There are many ways to cheat with athreshold scheme. Here are just afew of them.

Scenario 1: Colonels Alice, Bob, and Carol are in a bunker deep below some isolated field. One day,
they get a coded message from the president: "Launch the missiles. We're going to eradicate the last
vestiges of neural network research in the country.” Alice, Bob, and Carol reveal their shadows, but
Carol enters arandom number. She's actually a pacifist and doesn’t want the missiles launched.
Since Carol doesn’t enter the correct shadow, the secret they recover is the wrong secret. The
missiles stay in their silos. Even worse, no one knows why. Alice and Bob, even if they work

together, cannot prove that Carol’ s shadow isinvalid.

Scenario 2: Colonels Alice and Bob are sitting in the bunker with Mallory. Mallory has disguised
himself as a colonel and none of the others is the wiser. The same message comesin from the
president, and everyone reveals their shadows. "Bwa-ha-ha!" shouts Mallory. "I faked that message
from the president. Now | know both of your shadows." He races up the staircase and escapes before
anyone can catch him.

Scenario 3: Colonels Alice, Baob, and Carol are sitting in the bunker with Mallory, who is again
disguised. (Remember, Mallory doesn’'t have avalid shadow.) The same message comesin from the
president and everyone reveals their shadows. Mallory reveals his shadow only after he has heard the
other three. Since only three shadows are needed to reconstruct the secret, he can quickly create a
valid shadow and reveals that. Now, not only does he know the secret, but no one realizes that he
isn’t part of the scheme.

Some protocols that handle these sorts of cheaters are discussed in Section 23.2.
Secret Sharing without Trent

A bank wants its vault to open only if three out of five officers enter their keys. Thissoundslike a
basic (3,5)-threshold scheme, but there’ s a catch. No oneisto know the entire secret. Thereis no
Trent to divide the secret up into five pieces. There are protocols by which the five officers can
create a secret and each get a piece, such that none of the officers knows the secret until they all
reconstruct it. I’m not going to discuss these protocols in this book; see [756] for details.

Sharing a Secret without Revealing the Shares

These schemes have a problem. When everyone gets together to reconstruct their secret, they reveal
their shares. This need not be the case. If the shared secret is a private key (to adigital signature, for
example), then n shareholders can each complete a partial signature of the document. After the nth
partial signature, the document has been signed with the shared private key and none of the
shareholders learns any other shares. The point is that the secret can be reused, and you don’t need a
trusted processor to handle it. This concept is explored further by Yvo Desmedt and Yair Frankel
[483,484].

Verifiable Secret Sharing

Trent gives Alice, Bob, Carol, and Dave each a share or at |east he says he does. The only way any
of them know if they have avalid shareisto try to reconstruct the secret. Maybe Trent sent Bob a
bogus share or Bob accidentally received a bad share through communications error. Verifiable
secret sharing allows each of them to individually verify that they have avalid share, without having
to reconstruct the secret [558,1235].

Secret-Sharing Schemes with Prevention

A secret is divided up among 50 people so that any 10 can get together and reconstruct the secret.
That’s easy. But, can we implement the same secret-sharing scheme with the added constraint that
20 people can get together and prevent the others from reconstructing the secret, no matter how
many of them there are? Asit turns out, we can [153].

The math is complicated, but the basic idea is that everyone gets two shares: a"yes' share and a"no"
share. When it comes time to reconstruct the secret, people submit one of their shares. The actual
share they submit depends on whether they wish the secret reconstructed. If there are m or more

"yes' shares and fewer than n "no" shares, the secret can be reconstructed. Otherwise, it cannot.

Of course, nothing prevents a sufficient number of "yes' people from going off in a corner without
the "no" people (assuming they know who they are) and reconstructing the secret. But in a situation
where everyone submits their shares into a central computer, this scheme will work.

Secret Sharing with Disenrollment

Y ou've set up your secret-sharing system and now you want to fire one of your shareholders. Y ou
could set up anew scheme without that person, but that’ s time-consuming. There are methods for
coping with this system. They allow a new sharing scheme to be activated instantly once one of the
participants becomes untrustworthy [1004].

3.8 Cryptographic Protection of Databases

The membership database of an organization is a valuable commodity. On the one hand, you want to
distribute the database to al members. Y ou want them to communicate with one another, exchange
ideas, and invite each other over for cucumber sandwiches. On the other hand, if you distribute the
membership database to everyone, copies are bound to fall into the hands of insurance salesmen and
other annoying purveyors of junk mail.

Cryptography can ameliorate this problem. We can encrypt the database so that it is easy to extract
the address of a single person but hard to extract amailing list of al the members.

The scheme, from [550,549], is straightforward. Choose a one-way hash function and a symmetric
encryption algorithm. Each record of the database has two fields. The index field is the last name of
the member, operated on by the one-way hash function. The data field is the full name and address of
the member, encrypted using the last name as the key. Unless you know the last name, you can’t
decrypt the datafield.

Searching a specific last name is easy. First, hash the last name and look for the hashed valuein the
index field of the database. If there is a match, then that last name isin the database. If there are
several matches, then there are several people in the database with the last name. Finaly, for each
matching entry, decrypt the full name and address using the last name as the key.

In [550] the authors use this system to protect a dictionary of 6000 Spanish verbs. They report
minimal performance degradation due to the encryption. Additional complicationsin [549] handle
searches on multiple indexes, but the idea is the same. The primary problem with this system is that
i’ simpossible to search for people when you don’t know how to spell their name. Y ou can try
variant spellings until you find the correct one, but it isn’t practical to scan through everyone whose
name begins with "Sch" when looking for "Schneier."

This protection isn’t perfect. It is possible for a particularly persistent insurance salesperson to
reconstruct the membership database through brute-force by trying every possible last name. If he
has a tel ephone database, he can use it as alist of possible last names. This might take a few weeks
of dedicated number crunching, but it can be done. It makes his job harder and, in the world of junk
mail, "harder" quickly becomes "too expensive."

Another approach, in [185], allows statistics to be compiled on encrypted data.

Chapter 4
| nter mediate Protocols

4.1 Timestamping Services

In many situations, people need to certify that a document existed on a certain date. Think about a
copyright or patent dispute: The party that produces the earliest copy of the disputed work wins the
case. With paper documents, notaries can sign and lawyers can safeguard copies. If a dispute arises,
the notary or the lawyer testifies that the letter existed on a certain date.

In the digital world, it’s far more complicated. There isno way to examine adigital document for
signs of tampering. It can be copied and modified endlessly without anyone being the wiser. It's
trivial to change the date stamp on a computer file. No one can look at adigital document and say:
“Y es, this document was created before November 4, 1952.”

Stuart Haber and W. Scott Stornetta at Bellcore thought about the problem [682, 683, 92]. They
wanted adigital timestamping protocol with the following properties:

— The data itself must be timestamped, without any regard to the physical medium on which
it resides.

— It must be impossible to change a single bit of the document without that change being
apparent.

— It must be impossible to timestamp a document with a date and time different from the
present one.

Arbitrated Solution

This protocol uses Trent, who has a trusted timestamping service, and Alice, who wishesto
timestamp a document.

(1) Alicetransmits a copy of the document to Trent.
(2) Trent records the date and time he received the document and retains a copy of the
document for safekeeping.

Now, if anyone callsinto question Alice's claim of when the document was created, she just has to
call up Trent. He will produce his copy of the document and verify that he received the document on
the date and time stamped.

This protocol works, but has some obvious problems. First, thereis no privacy. Alice hasto givea
copy of the document to Trent. Anyone listening in on the communications channel could read it.
She could encrypt it, but still the document hasto sit in Trent’ s database. Who knows how secure
that database is?

Second, the database itself would have to be huge. And the bandwidth requirements to send large
documents to Trent would be unwieldy.

The third problem has to do with the potential errors. An error in transmission, or an electromagnetic
bomb detonating somewherein Trent’s central computers, could completely invalidate Alice’s claim
of atimestamp.

And fourth, there might not be someone as honest as Trent to run the timestamping service. Maybe
Aliceisusing Bob's Timestamp and Taco Stand. There is nothing to stop Alice and Bob from

colluding and timestamping a document with any time that they want.
I mproved Arbitrated Solution
One-way hash functions and digital signatures can clear up most of these problems easily:

(1) Alice produces aone-way hash of the document.

(2) Alicetransmitsthe hashto Trent.

(3) Trent appends the date and time he received the hash onto the hash and then digitally signs
the result.

(4) Trent sends the signed hash with timestamp back to Alice.

This solves every problem but the last. Alice no longer has to worry about revealing the contents of
her document; the hash is sufficient. Trent no longer has to store copies of the document (or even of
the hash), so the massive storage requirements and security problems are solved (remember, one-
way hash functions don’t have akey). Alice can immediately examine the signed timestamped hash
shereceivesin step (4), so she will immediately catch any transmission errors. The only problem
remaining isthat Alice and Trent can still collude to produce any timestamp they want.

Linking Protocol

One way to solve this problemisto link Alice’ s timestamp with timestamps previously generated by
Trent. These timestamps will most probably be generated for people other than Alice. Since the
order that Trent receives the different timestamp requests can’t be known in advance, Alice’s
timestamp must have occurred after the previous one. And since the request that came after islinked
with Alice stimestamp, then hers must have occurred before. This sandwiches Alice' srequest in
time.

If Ais Alice’s name, the hash value that Alice wants timestamped isH ,, and the previous time stamp
isT,, .4, thenthe protocol is:
(1) AlicesendsTrent H, and A.

(2) Trent sends back to Alice:
Tn = %(n'A'Hn’tn’ln - 1'Hn - 1'Tn - 1’Ln)

where L, consists of the following hashed linking information:
Ln = I_|(|n - 1’Hn - 1’Tn - 1’Ln - 1)

S indicates that the message is signed with Trent’s private key. Alice's name identifies her as

the originator of the request. The parameter n indicates the sequence of the request: Thisisthe
nth timestamp Trent has issued. The parameter t, is thetime. The additional information is the

identification, original hash, time, and hashed timestamp of the previous document Trent
stamped.
(3) After Trent stamps the next document, he sends Alice the identification of the originator

of that document: |, , 4.

If someone challenges Alice' stimestamp, she just contacts the originators of the previous and
following documents: |, and 1, ;. If their documents are called into question, they can get in

touchwith | _,andl , 5, and so on. Every person can show that their document was timestamped
after the one that came before and before the one that came after.

This protocol makesit very difficult for Alice and Trent to collude and produce a document stamped
with adifferent time than the actual one. Trent cannot forward-date a document for Alice, since that
would reguire knowing in advance what document request came before it. Even if he could fake that,
he would have to know what document request came before that, and so on. He cannot back-date a
document, because the timestamp must be embedded in the timestamps of the document issued
immediately after, and that document has already been issued. The only possible way to break this
scheme isto invent afictitious chain of documents both before and after Alice’s document, long
enough to exhaust the patience of anyone challenging the timestamp.

Distributed Protocol

People die; timestamps get lost. Many things could happen between the timestamping and the
challenge to make it impossible for Aliceto get acopy of || _, 'stimestamp. This problem could be

aleviated by embedding the previous 10 peopl€’ s timestampsinto Alice's, and then sending Alice
the identities of the next 10 people. Alice has agreater chance of finding people who still have their
timestamps.

Along asimilar line, the following protocol does away with Trent altogether.

(1) Using H, asinput, Alice generates a string of random values using a cryptographically
secure pseudo-random-number generator:

Vi Vo, Vg, .V
(2) Aliceinterprets each of these values as the identification, |, of another person. She sends
H,, to each of these people.

(3) Each of these people attaches the date and time to the hash, signs the result, and sends it
back to Alice.
(4) Alice collects and stores all the signatures as the timestamp.

The cryptographically secure pseudo-random-number generator in step (1) prevents Alice from
deliberately choosing corrupt Is as verifiers. Even if she makestrivial changesin her document in an
attempt to construct a set of corrupt Is, her chances of getting away with this are negligible. The hash
function randomizesthe Is; Alice cannot force them.

This protocol works because the only way for Alice to fake atimestamp would be to convince al of
the k people to cooperate. Since she chose them at random in step (1), the odds against this are very
high. The more corrupt society is, the higher a number k should be.

Additionally, there should be some mechanism for dealing with people who can’t promptly return
the timestamp. Some subset of kisall that would be required for avalid timestamp. The details
depend on the implementation.

Further Work

Further improvements to timestamping protocols are presented in [92]. The authors use binary trees
to increase the number of timestamps that depend on a given timestamp, reducing even further the
possibility that someone could create a chain of fictitious timestamps. They also recommend
publishing a hash of the day’ s timestamps in a public place, such as a newspaper. This servesa
function similar to sending the hash to random people in the distributed protocol. In fact, a
timestamp has appeared in every Sunday’s New York Times since 1992,

These timestamping protocols are patented [684, 685, 686]. A Bellcore spin-off company called
Surety Technologies owns the patents and markets a Digital Notary System to support these

protocols. In their first version, clients send “certify” requeststo a central coordinating server.
Following Merkle' s technique of using hash functions to build trees [1066], the server builds atree
of hash values whose leaves are all the requests received during a given second, and sends back to
each requester the list of hash values hanging off the path from its leaf to the root of the tree. The
client software stores thislocally, and can issue a Digital Notary “certificate” for any file that has
been certified. The sequence of roots of these trees comprises the “Universal Validation Record” that
will be available electronically at multiple repository sites (and also published on CD-ROM). The
client software also includes a“validate” function, allowing the user to test whether afile has been
certified in exactly its current form (by querying arepository for the appropriate tree root and
comparing it against a hash value appropriately recomputed from the file and its certificate). For
information contact Surety Technologies, 1 Main St., Chatham, NJ, 07928; (201) 701-0600; Fax:
(201) 701-0601.

4.2 Subliminal Channel

Alice and Bob have been arrested and are going to prison. He' s going to the men’s prison and she's
going to the women’ s prison. Walter, the warden, iswilling to let Alice and Bob exchange messages,
but he won't alow them to be encrypted. Walter expects them to coordinate an escape plan, so he
wants to be able to read everything they say.

Walter also hopesto deceive either Alice or Bob. He wants one of them to accept a fraudulent
message as a genuine message from the other. Alice and Bob go along with this risk of deception,
otherwise they cannot communicate at al, and they have to coordinate their plans. To do this they
have to deceive the warden and find away of communicating secretly. They haveto set up a
subliminal channel, a covert communications channel between them in full view of Walter, even
though the messages themselves contain no secret information. Through the exchange of perfectly
innocuous signed messages they will pass secret information back and forth and fool Walter, even
though Walter iswatching all the communications.

An easy subliminal channel might be the number of words in a sentence. An odd number of wordsin
a sentence might correspond to “1, ” while an even number of words might correspond to “0.” So,
while you read this seemingly innocent paragraph, | have sent my operativesin the field the message
“101.” The problem with this technique is that it is mere steganography (see Section 1.2); thereisno
key and security depends on the secrecy of the algorithm.

Gustavus Simmons invented the concept of a subliminal channel in a conventional digital signature
algorithm [1458, 1473]. Since the subliminal messages are hidden in what looks like normal digital
signatures, thisis aform of obfuscation. Walter sees signed innocuous messages pass back and forth,
but he completely misses the information being sent over the subliminal channel. In fact, the
subliminal-channel signature algorithm is indistinguishable from a normal signature algorithm, at
least to Walter. Walter not only cannot read the subliminal message, but he also has no idea that one
IS even present.

In general the protocol looks like this:

(1) Alice generates an innocuous message, pretty much at random.

(2) Using asecret key shared with Bob, Alice signs the innocuous message in such away that
she hides her subliminal message in the signature. (Thisisthe meat of the subliminal channel
protocol; see Section 23.3.)

(3) Alice sends this signed message to Bob via Walter.

(4) Walter reads the innocuous message and checks the signature. Finding nothing amiss, he
passes the signed message to Bab.

(5) Bob checks the signature on the innocuous message, confirming that the message came
from Alice.

(6) Bob ignores the innocuous message and, using the secret key he shares with Alice,
extracts the subliminal message.

What about cheating? Walter doesn’t trust anyone and no one trusts him. He can always prevent
communication, but he has no way of introducing phony messages. Since he can’'t generate any valid
signatures, Bob will detect his attempt in step (5). And since he does not know the shared key, he
can’'t read the subliminal messages. Even more important, he has no idea that the subliminal
messages are there. Signed messages using a digital signature algorithm look no different from
signed messages with subliminal messages embedded in the signature.

Cheating between Alice and Bob is more problematic. In some implementations of a subliminal
channel, the secret information Bob needs to read the subliminal message is the same information
Alice needs to sign the innocuous message. If thisisthe case, Bob can impersonate Alice. He can
sign messages purporting to come from her, and there is nothing Alice can do about it. If sheisto
send him subliminal messages, she hasto trust him not to abuse her private key.

Other subliminal channel implementations don’t have this problem. A secret key shared by Alice and
Bob allows Alice to send Bob subliminal messages, but it is not the same as Alice' s private key and
does not allow Bob to sign messages. Alice need not trust Bob not to abuse her private key.

Applications of Subliminal Channel

The most obvious application of the subliminal channel isin a spy network. If everyone sends and
receives signed messages, spies will not be noticed sending subliminal messages in signed
documents. Of course, the enemy’ s spies can do the same thing.

Using a subliminal channel, Alice could safely sign a document under threat. She would, when
signing the document, imbed the subliminal message, saying, “I am being coerced.” Other
applications are more subtle. A company can sign documents and embed subliminal messages,
allowing them to be tracked throughout the documents’ lifespans. The government can “mark”
digital cash. A malicious signature program can leak secret information in its signatures. The
possibilities are endless.

Subliminal-Free Signatures

Alice and Bob are sending signed messages to each other, negotiating the terms of a contract. They
use adigital signature protocol. However, this contract negotiation has been set up as a cover for
Alice sand Bob's spying activities. When they use the digital signature algorithm, they don’t care
about the messages they are signing. They are using a subliminal channel in the signatures to send
secret information to each other. The counterespionage service, however, doesn’t know that the
contract negotiations and the use of signed messages are just cover-ups. This concern has led people
to create subliminal-free signatur e schemes. These digital signature schemes cannot be modified to
contain asubliminal channel. See [480, 481] for details.

4.3 Undeniable Digital Signatures

Normal digital signatures can be copied exactly. Sometimes this property is useful, asin the
dissemination of public announcements. Other times it could be a problem. Imagine adigitally
signed personal or business letter. If many copies of that document were floating around, each of
which could be verified by anyone, this could lead to embarrassment or blackmail. The best solution
isadigital signature that can be proven valid, but that the recipient cannot show to athird party
without the signer’ s consent.

The Alice Software Company distributes DEW (Do-Everything-Word). To ensure that their software
isvirus-free, they include adigital signature with each copy. However, they want only legitimate
buyers of the software, not software pirates, to be able to verify the signature. At the same time, if
copies of DEW are found to contain avirus, the Alice Software Company should be unable to deny a
valid signature.

Undeniable signatures[343, 327] are suited to these sorts of tasks. Like anormal digital signature,
an undeniable signature depends on the signed document and the signer’s private key. But unlike
normal digital signatures, an undeniable signature cannot be verified without the signer’ s consent.
Although a better name for these signatures might be something like “nontransferable signatures, ”
the name comes from the fact that if Aliceisforced to either acknowledge or deny a signature—
perhaps in court—she cannot falsely deny her real signature.

The mathematics are complicated, but the basic ideais simple:

(1) Alice presents Bob with asignature.

(2) Bob generates arandom number and sendsit to Alice.

(3) Alice does a calculation using the random number and her private key and sends Bob the
result. Alice could only do this calculation if the signature is valid.

(4) Bob confirmsthis.

Thereis also an additional protocol so that Alice can prove that she did not sign a document, and
cannot falsely deny a signature.

Bob can’t turn around and convince Carol that Alice’ s signature is valid, because Carol doesn’t
know that Bob’s numbers are random. He could have easily worked the protocol backwards on
paper, without any help from Alice, and then shown Carol the result. Carol can be convinced that
Alice' ssignatureisvalid only if she completes the protocol with Alice herself. This might not make
much sense now, but it will once you see the mathematics in Section 23.4.

This solution isn’t perfect. Yvo Desmedt and Moti Y ung show that it is possible, in some
applications, for Bob to convince Carol that Alice’ s signatureisvalid [489].

For instance, Bob buys alegal copy of DEW. He can validate the signature on the software package
whenever he wants. Then, Bob convinces Carol that he's a salesman from the Alice Software
Company. He sells her a pirated copy of DEW. When Carol triesto validate the signature with Bab,
he simultaneously validates the signature with Alice. When Carol sends him the random number, he
then sends it on to Alice. When Alice replies, he then sends the reply on to Carol. Carol is convinced
that she isalegitimate buyer of the software, even though sheisn’'t. This attack is an instance of the
chess grandmaster problem and is discussed in detail in Section 5.2.

Even so, undeniable signatures have alot of applications; in many instances Alice doesn’t want
anyone to be able to verify her signature. She might not want personal correspondence to be
verifiable by the press, be shown and verified out of context, or even to be verified after things have
changed. If she signs a piece of information she sold, she won’t want someone who hasn’t paid for
the information to be able to verify its authenticity. Controlling who verifies her signatureis away
for Aliceto protect her personal privacy.

A variant of undeniable signatures separates the relation between signer and message from the
relation between signer and signature [910]. In one signature scheme, anyone can verify that the
signer actually created the signature, but the cooperation of the signer isrequired to verify that the
signature isvalid for the message.

A related notion is an entrusted undeniable signatur e [1229]. Imagine that Alice works for Toxins,

Inc., and sends incriminating documents to a newspaper using an undeniable signature protocol.
Alice can verify her signature to the newspaper reporter, but not to anyone else. However, CEO Bob
suspects that Alice isthe source of the documents. He demands that Alice run the disavowal protocol
to clear her name, and Alice refuses. Bob maintains that the only reason Alice hasto refuse is that
sheisguilty, and fires her.

Entrusted undeniable signatures are like undeniable signatures, except that the disavowal protocol
can only be run by Trent. Bob cannot demand that Alice run the disavowal protocol; only Trent can.
And if Trent isthe court system, then he will only run the protocol to resolve aformal dispute.

4.4 Designated Confirmer Signatures

The Alice Software Company is doing a booming business selling DEW—so good, in fact, that
Aliceis spending more time verifying undeniable signatures than writing new features.

Alice would like away to designate one particular person in the company to be in charge of
signature verification for the whole company. Alice, or any other programmer, would be able to sign
documents with an undeniable protocol. But the verifications would all be handled by Carol.

Asit turns out, thisis possible with designated confirmer signatures[333, 1213]. Alice cansign a
document such that Bob is convinced the signature is valid, but he cannot convince athird party; at
the same time Alice can designate Carol as the future confirmer of her signature. Alice doesn’t even
need to ask Carol’s permission beforehand; she just has to use Carol’s public key. And Carol can still
verify Alice' ssignature if Aliceisout of town, has |eft the company, or just upped and died.

Designated confirmer signatures are kind of a compromise between normal digital signatures and
undeniable signatures. There are certainly instances where Alice might want to limit who can verify
her signature. On the other hand, giving Alice complete control undermines the enforceability of
signatures: Alice might refuse to cooperate in either confirming or denying, she might claim the loss
of keysfor confirming or denying, or she might just be unavailable. Designated confirmer signatures
can give Alice the protection of an undeniable signature while not letting her abuse that protection.
Alice might even prefer it that way: Designated confirmer signatures can help prevent false
applications, protect her if she actually does lose her key, and step in if sheis on vacation, in the
hospital, or even dead.

Thisideahas al sorts of possible applications. Carol can set herself up as anotary public. She can
publish her public key in some directory somewhere, and people can designate her as a confirmer for
their signatures. She can charge a small fee for confirming signatures for the masses and make a nice
living.

Carol can be a copyright office, agovernment agency, or a host of other things. This protocol allows
organizations to separate the people who sign documents from the people who help verify signatures.

4.5 Proxy Signatures

Designated confirmer signatures allows a signer to designate someone else to verify his signature.
Alice, for instance, needs to go on a business trip to someplace which doesn’t have very good
computer network access—to the jungles of Africa, for example. Or maybe she is incapacitated after
major surgery. She expects to receive some important e-mail, and has instructed her secretary Bob to
respond accordingly. How can Alice give Bob the power to sign messages for her, without giving
him her private key?

Proxy signaturesisasolution [1001]. Alice can give Bob a proxy, such that the following
properties hold:

— Distinguishability. Proxy signatures are distinguishable from normal signatures by anyone.
— Unforgeability. Only the original signer and the designated proxy signer can create avalid
proxy signature.

— Proxy signer’sdeviation. A proxy signer cannot create a valid proxy signature not detected
as aproxy signature.

— Verifiability. From a proxy signature, a verifier can be convinced of the original signer’s
agreement on the signed message.

— ldentifiability. An original signer can determine the proxy signer’sidentity from a proxy
signature.

— Undeniability. A proxy signer cannot disavow an accepted proxy signature he created.

In some cases, a stronger form of identifiability is required—that anyone can determine the proxy
signer’sidentity from the proxy signature. Proxy signature schemes, based on different digital
signature schemes, are in [1001].

4.6 Group Signatures
David Chaum introduces this problem in [330]:

A company has several computers, each connected to the local network. Each
department of that company has its own printer (also connected to the network) and only
persons of that department are allowed to use their department’ s printer. Before printing,
therefore, the printer must be convinced that the user isworking in that department. At
the same time, the company wants privacy; the user’ s name may not be revealed. If,
however, someone discovers at the end of the day that a printer has been used too often,
the director must be able to discover who misused that printer, and send him abill.

The solution to this problem is called a group signatur e. Group signatures have the following
properties:

— Only members of the group can sign messages.

— Thereceiver of the signature can verify that it is avalid signature from the group.

— The receiver of the signature cannot determine which member of the group is the signer.
— Inthe case of adispute, the signature can be “opened” to reveal the identity of the signer.

Group Signatures with a Trusted Arbitrator
This protocol uses atrusted arbitrator:

(1) Trent generates alarge pile of public-key/private-key key pairs and gives every member of
the group adifferent list of unique private keys. No keys on any list areidentical. (If there are
n members of the group, and each member gets m key pairs, then there are n* mtotal key
pairs.)

(2) Trent publishesthe master list of all public keys for the group, in random order. Trent
keeps a secret record of which keys belong to whom.

(3) When group members want to sign a document, he chooses a key at random from his
personal list.

(4) When someone wants to verify that a signature belongs to the group, he looks on the
master list for the corresponding public key and verifies the signature.

(5) Inthe event of adispute, Trent knows which public key corresponds to which group
member.

The problem with this protocol isthat it requires atrusted party. Trent knows everyone's private
keys and can forge signatures. Also, mmust be long enough to preclude attempts to analyze which

keys each member uses.

Chaum [330] lists a number of other protocols, some in which Trent is unable to fake signatures and
othersin which Trent is not even required. Another protocol [348] not only hides the identity of the
signer, but also allows new members to join the group. Y et another protocol is[1230].

4.7 Fail-Stop Digital Signatures

Let’'ssay Eveisavery powerful adversary. She has vast computer networks and rooms full of Cray
computers—orders of magnitude more computing power than Alice. All of these computers chug
away, day and night, trying to break Alice’s private key. Finally—success. Eve can now impersonate
Alice, forging her signature on documents at will.

Fail-stop digital signatures, introduced by Birgit Pfitzmann and Michael Waidner [1240], prevent
thiskind of cheating. If Eve forges Alice' s signatures after a brute-force attack, then Alice can prove
they areforgeries. If Alice signs adocument and then disavows the signature, claiming forgery, a
court can verify that it isnot aforgery.

The basic idea behind fail-stop signaturesis that for every possible public key, many possible private
keyswork with it. Each of these private keys yields many different possible signatures. However,
Alice has only one private key and can compute just one signature. Alice doesn’t know any of the
other private keys.

Eve wants to break Alice s private key. (Eve could also be Alice, trying to compute a second private
key for herself.) She collects signed messages and, using her array of Cray computers, triesto
recover Alice' s private key. Even if she manages to recover avalid private key, there are so many
possible private keysthat it is far more likely that she has a different one. The probability of Eve's
recovering the proper private key can be made so small asto be negligible.

Now, when Eve forges a signed document using the private key she generated, it will have a
different signature than if Alice signs the document herself. When Aliceis hauled off to court, she
can produce two different signatures for the same message and public key (corresponding to her
private key and to the private key Eve created) to prove forgery. On the other hand, if Alice cannot
produce the two different signatures, there is no forgery and Aliceis still bound by her signature.

This signature scheme protects against Eve breaking Alice’ s signature scheme by sheer
computational power. It does nothing against Mallory’ s much more likely attack of breaking into
Alice’ s house and stealing her private key or Alice’s attack of signing a document and then
conveniently losing her private key. To protect against the former, Alice should buy herself agood
guard dog; that kind of thing is beyond the scope of cryptography.

Additional theory and applications of fail-stop signatures can be found in [1239, 1241, 730, 731].
4.8 Computing with Encrypted Data

Alice wants to know the solution to some function f(x), for some particular value of x. Unfortunately,
her computer is broken. Bob iswilling to compute f(x) for her, but Aliceisn’t keen on letting Bob
know her x. How can Alice let Bob compute f(x) for her without telling him x?

Thisisthe general problem of computing with encrypted data, also caled hiding information
from an oracle. (Bob isthe oracle; he answers questions.) There are waysto do thisfor certain
functions; they are discussed in Section 23.6.

4.9 Bit Commitment

The Amazing Alice, magician extraordinaire, will now perform a mystifying feat of mental prowess.
She will guess the card Bob will choose before he chooses it! Watch as Alice writes her prediction
on apiece of paper. Marvel as Alice puts that piece of paper in an envelope and sealsit shut. Thrill
as Alice hands that sealed envelope to arandom member of the audience. “Pick a card, Bob, any
card.” Helooks at it and shows it to Alice and the audience. It’s the seven of diamonds. Alice now
takes the envel ope back from the audience. She rips it open. The prediction, written before Bob
chose his card, says “seven of diamonds’! Applause.

To make thiswork, Alice had to switch envelopes at the end of the trick. However, cryptographic
protocols can provide a method immune from any sleight of hand. Why is this useful? Here’ s a more
mundane story:

Stockbroker Alice wants to convince investor Bob that her method of picking winning stocksis
sound.

Bob: “Pick five stocks for me. If they are al winners, I'll give you my business.”

Alice: “If | pick five stocks for you, you could invest in them without paying me. Why
don’t | show you the stocks | picked last month?”

Bob: “How do | know you didn’t change last month’s picks after you knew their
outcome? If you tell me your picks now, I’ll know that you can’t change them. | won’t
invest in those stocks until after I’ ve purchased your method. Trust me.”

Alice: “I'd rather show you my picks from last month. | didn’t change them. Trust me.”

Alice wantsto commit to a prediction (i.e., abit or series of bits) but does not want to reveal her
prediction until sometime later. Bob, on the other hand, wants to make sure that Alice cannot change
her mind after she has committed to her prediction.

Bit Commitment Using Symmetric Cryptography
This bit-commitment protocol uses symmetric cryptography:

(1) Bob generates arandom-bit string, R, and sends it to Alice.

R
(2) Alice creates amessage consisting of the bit she wishes to commit to, b (it can actually be
severa bits), and Bob’ s random string. She encrypts it with some random key, K, and sends
the result back to Bob.

Ex(RD)

That isthe commitment portion of the protocol. Bob cannot decrypt the message, so he does not
know what the bit is.

When it comestime for Aliceto reveal her bit, the protocol continues:
(3) Alice sends Bob the key.
(4) Bob decrypts the message to reveal the bit. He checks his random string to verify the bit's
validity.

If the message did not contain Bob’s random string, Alice could secretly decrypt the message she

handed Bob with a variety of keys until she found one that gave her a bit other than the one she
committed to. Since the bit has only two possible values, sheis certain to find one after only afew
tries. Bob’s random string prevents her from using this attack; she has to find a new message that not
only has her bit inverted, but also has Bob’ s random string exactly reproduced. If the encryption
algorithm is good, the chance of her finding thisis minuscule. Alice cannot change her bit after she
commitstoit.

Bit Commitment Using One-Way Functions
This protocol uses one-way functions:

(1) Alice generatestwo random-bit strings, R, and R,
RiR,
(2) Alice creates amessage consisting of her random strings and the bit she wishes to commit

to (it can actually be several bits).
(Rl!RZib)

(3) Alice computes the one-way function on the message and sends the result, as well as one
of the random strings, to Bab.
H(R;,R,b),R;

Thistransmission from Aliceis evidence of commitment. Alice' s one-way function in step (3)
prevents Bob from inverting the function and determining the bit.

When it comestime for Alice to reveal her bit, the protocol continues:

(4) Alice sends Bob the original message.
(Rl!RZib)

(5) Bob computes the one-way function on the message and comparesit and R;, with the
value and random string he received in step (3). If they match, the bit isvalid.

The benefit of this protocol over the previous oneis that Bob does not have to send any messages.
Alice sends Bob one message to commit to a bit and another message to reveal the bit.

Bob's random string isn’t required because the result of Alice’'s commitment is a message operated
on by aone-way function. Alice cannot cheat and find another message (R;,R,",b’), such that H

(Ry;Ry,b") =H(R,R,,b). By sending Bob R, sheis committing to the value of b. If Alice didn’t
keep R, secret, then Bob could compute both H(R;,R, b) and H(R;,R,,b") and see which was equal
to what he received from Alice.

Bit Commitment Using Pseudo-Random-Sequence Generators
This protocol iseven easier [1137]:

(1) Bob generates arandom-hbit string and sendsiit to Alice.

Ry

(2) Alice generates arandom seed for a pseudo-random-bit generator. Then, for every bit in
Bob's random-bit string, she sends Bob either:

(a) the output of the generator if Bob’s bitis0, or

(b) the XOR of output of the generator and her bit, if Bob’sbit is 1.

When it comestime for Aliceto revea her bit, the protocol continues:

(3) Alice sends Bob her random seed.
(4) Bob completes step (2) to confirm that Alice was acting fairly.

If Bob’s random-hit string islong enough, and the pseudo-random-bit generator is unpredictable,
then there is no practical way Alice can cheat.

Blobs

These strings that Alice sends to Bob to commit to a bit are sometimes called blobs. A blobisa
sequence of bits, although there is no reason in the protocols why it has to be. As Gilles Brassard
said, “They could be made out of fairy dust if this were useful” [236]. Blobs have these four
properties:

1. Alice can commit to blobs. By committing to a blob, she is committing to a bit.

2. Alice can open any blob she has committed to. When she opens a blob, she can convince
Bob of the value of the bit she committed to when she committed to the blob. Thus, she cannot
choose to open any blob as either a zero or aone.

3. Bob cannot learn how Aliceis able to open any unopened blob she has committed to. This
istrue even after Alice has opened other blobs.

4. Blobs do not carry any information other than the bit Alice committed to. The blobs
themselves, as well as the process by which Alice commits to and opens them, are
uncorrelated to anything else that Alice might wish to keep secret from Baob.

4.10 Fair Coin Flips
It's story time with Joe Kilian [831]:

Alice and Bob wanted to flip afair coin, but had no physical coin to flip. Alice offered a
simple way of flipping afair coin mentaly.

“First, you think up arandom bit, then I’ll think up arandom bit. We'll then exclusive-
or the two bits together, ” she suggested.

“But what if one of us doesn’t flip a coin at random?’ Bob asked.

“It doesn’t matter. Aslong as one of the bitsis truly random, the exclusive-or of the bits
should be truly random, ” Alice replied, and after amoment’ s reflection, Bob agreed.

A short while later, Alice and Bob happened upon a book on artificial intelligence, lying
abandoned by the roadside. A good citizen, Alice said, “One of us must pick this book
up and find a suitable waste receptacle.” Bob agreed, and suggested they use their coin-
flipping protocol to determine who would have to throw the book away.

“If thefinal bitisa0, then you will pick the book up, and if itisa 1, then | will, ” said
Alice. “What is your hit?’

Bob replied, “1.”
“Why, soismine, ” said Alice, slyly, “I guessthisisn't your lucky day.”

Needless to say, this coin-flipping protocol had a serious bug. While it istrue that atruly

random bit, X, exclusive-ORed with any independently distributed bit, y, will yield a
truly random bit, Alice's protocol did not ensure that the two bits were distributed
independently. In fact, it is not hard to verify that no mental protocol can allow two
infinitely powerful partiesto flip afair coin. Alice and Bob were in trouble until they
received aletter from an obscure graduate student in cryptography. The information in
the letter was too theoretical to be of any earthly use to anyone, but the envelope the
letter came in was extremely handy.

The next time Alice and Bob wished to flip a coin, they played a modified version of the
original protocol. First, Bob decided on a bit, but instead of announcing it immediately,
he wrote it down on a piece of paper and placed the paper in the envelope. Next, Alice
announced her bit. Finally, Alice and Bob took Bob'’s bit out of the envelope and
computed the random bit. This bit was indeed truly random whenever at least one of
them played honestly. Alice and Bob had a working protocol, the cryptographer’ s dream
of social relevance was fulfilled, and they all lived happily ever after.

Those envelopes sound alot like bit-commitment blobs. When Manuel Blum introduced the problem
of flipping afair coin over amodem [194], he solved it using a bit-commitment protocol :

(1) Alice commitsto arandom bit, using any of the bit-commitment schemes listed in Section
4.9.

(2) Bob triesto guessthe hit.

(3) Alicerevealsthe bit to Bob. Bob winstheflip if he correctly guessed the bit.

In general, we need a protocol with these properties:

— Alice must flip the coin before Bob guesses.
— Alice must not be able to re-flip the coin after hearing Bob’ s guess.
— Bob must not be able to know how the coin landed before making his guess.

There are several ways in which we can do this.
Coin Flipping Using One-Way Functions
If Alice and Bob can agree on a one-way function, this protocol is simple:

(1) Alice chooses arandom number, x. She computesy = f(x), where f(x) is the one-way
function.

(2) Alicesendsy to Bob.

(3) Bob guesses whether x is even or odd and sends his guessto Alice.

(4) If Bob'sguessis correct, the result of the coin flip is heads. If Bob's guessisincorrect, the
result of the coin flip istails. Alice announces the result of the coin flip and sends x to Bab.

(5) Bob confirmsthat y = f(X).

The security of this protocol rests in the one-way function. If Alice can find x and X’, such that x is
even and X" isodd, and y = f(x) = f(x"), then she can cheat Bob every time. The least significant bit of
f(X) must also be uncorrelated with x. If not, Bob can cheat Alice at least some of the time. For
example, if f(x) produces even numbers 75 percent of the timeif x is even, Bob has an advantage.
(Sometimes the least significant bit is not the best one to use in this application, because it can be
easier to compute.)

Coin Flipping Using Public-Key Cryptography

This protocol works with either public-key cryptography or symmetric cryptography. The only

requirement is that the algorithm commute. That is:
Dy 1(Ex 2(Ex1(M))) = E,(M)

In general, this property is not true for symmetric algorithms, but it is true for some public-key
algorithms (RSA with identical moduli, for example). Thisisthe protocol:

(1) Alice and Bob each generate a public-key/private-key key pair.

(2) Alice generates two messages, one indicating heads and the other indicating tails. These
messages should contain some unigue random string, so that she can verify their authenticity
later in the protocol. Alice encrypts both messages with her public key and sends them to Bob
in arandom order.

Ep(My), EA(M,)
(3) Bob, who cannot read either message, chooses one at random. (He can sing “ eeny meeny
miney moe, ” engage a malicious computer intent on subverting the protocol, or consult the |
Ching—it doesn’'t matter.) He encrypts it with his public key and sends it back to Alice.
Eg(EA(M))

M iseither M, or M.,
(4) Alice, who cannot read the message sent back to her, decryptsit with her private key and
then sends it back to Bob. _

DA(Eg(Ep(M))) = Eg(My) if M =M, or

Eg(M,) if M =M,
(5) Bob decrypts the message with his private key to reveal the result of the coin flip. He
sends the decrypted message to Alice.

Dg(Eg(M,)) =M, or Dg(Eg(M,)) =M,
(6) Alice readsthe result of the coin flip and verifies that the random string is correct.

(7) Both Alice and Bob reveal their key pairs so that both can verify that the other did not
cheat.

This protocol is self-enforcing. Either party can immediately detect cheating by the other, and no
trusted third party is required to participate in either the actual protocol or any adjudication after the
protocol has been completed. To see how thisworks, let’ stry to cheat.

If Alice wanted to cheat and force heads, she has three potential ways of affecting the outcome. First,
she could encrypt two “heads’ messagesin step (2). Bob would discover this when Alice revealed
her keys at step (7). Second, she could use some other key to decrypt the message in step (4). This
would result in gibberish, which Bob would discover in step (5). Third, she could lie about the
validity of the message in step (6). Bob would aso discover thisin step (7), when Alice could not
prove that the message was not valid. Of course, Alice could refuse to participate in the protocol at
any step, at which point Alice s attempted deception would be obvious to Bob.

If Bob wanted to cheat and force “tails, ” his options are just as poor. He could incorrectly encrypt a
message at step (3), but Alice would discover this when she looked at the final message at step (6).
He could improperly perform step (5), but this would aso result in gibberish, which Alice would
discover at step (6). He could claim that he could not properly perform step (5) because of some
cheating on the part of Alice, but thisform of cheating would be discovered at step (7). Findly, he
could send a“tails’ message to Alice at step (5), regardiess of the message he decrypted, but Alice
would immediately be able to check the message for authenticity at step (6).

Flipping Coinsinto a Well

It isinteresting to note that in al these protocols, Alice and Bob don’t learn the result of the coin flip
at the same time. Each protocol has a point where one of the parties (Alice in the first two protocols
and Bob in the last one) knows the result of the coin flip but cannot change it. That party can,
however, delay disclosing the result to the other party. Thisis known as flipping coinsinto a well.
Imagine awell. Aliceis next to the well and Bob is far away. Bob throws the coin and it landsin the
well. Alice can now look into the well and see the result, but she cannot reach down to changeit.
Bob cannot see the result until Alice lets him come close enough to look.

Key Generation Using Coin Flipping

A real application for this protocol is session-key generation. Coin-flipping protocols alow Alice
and Bob to generate a random session key such that neither can influence what the session key will
be. And assuming that Alice and Bob encrypt their exchanges, this key generation is secure from
eavesdropping as well.

4.11 Mental Poker

A protocol similar to the public-key fair coin flip protocol allows Alice and Bob to play poker with
each other via electronic mail. Instead of Alice making and encrypting two messages, one for heads
and one for tails, she makes 52 messages, M,, M,,..., Mg, one for each card in the deck. Bob

chooses five messages at random, encrypts them with his public key, and then sends them back to
Alice. Alice decrypts the messages and sends them back to Bob, who decrypts them to determine his
hand. He then chooses five more messages at random and sends them back to Alice as he received
them; she decrypts these and they become her hand. During the game, additional cards can be dealt
to either player by repeating the procedure. At the end of the game, Alice and Bob both reveal their
cards and key pairs so that each can be assured that the other did not cheat.

Mental Poker with Three Players

Poker is more fun with more players. The basic mental poker protocol can easily be extended to
three or more players. In this case, too, the cryptographic agorithm must be commutative.

(1) Alice, Bob, and Carol each generate a public-key/private-key key pair.

(2) Alice generates 52 messages, one for each card in the deck. These messages should
contain some unique random string, so that she can verify their authenticity later in the
protocol. Alice encrypts al the messages with her public key and sends them to Bob.

E.(M)
AV n
(3) Bab, who cannot read any of the messages, chooses five at random. He encrypts them with
his public key and sends them back to Alice.

Eg(EA(M))
(4) Bob sendsthe other 47 messagesto Carol.

EA(M,)
(5) Carol, who cannot read any of the messages, chooses five at random. She encrypts them
with her public key and sends them to Alice.

Ec(EA(M))
(6) Alice, who cannot read any of the messages sent back to her, decrypts them with her
private key and then sends them back to Bob or Carol (depending on where they came from).

DA(EB(EA(MH))) = EB(Mn)
DA(Ec(EA(Mn))) = Ec(Mn)

(7) Bob and Carol decrypt the messages with their keysto reveal their hands.
DB(EB(Mn)) = Mn

DC(EC(Mn)) = |vln
(8) Carol chooses five more messages at random from the remaining 42. She sends them to
Alice.

E (M)
(9) Alice decrypts the messages with her private key to reveal her hand.

DA(EA(Mn)) = Mn
(10) At the end of the game Alice, Bob, and Carol all reveal their hands and all of their keys
so that everyone can make sure that no one has cheated.

Additional cards can be dealt in the same manner. If Bob or Carol wants a card, either one can take
the encrypted deck and go through the protocol with Alice. If Alice wants a card, whoever currently
has the deck sends her arandom card.

Ideally, step (10) would not be necessary. All players shouldn’t be required to reveal their hands at
the end of the protocol; only those who haven't folded. Since step (10) is part of the protocol
designed only to catch cheaters, perhaps there are improvements.

In poker, oneisonly interested in whether the winner cheated. Everyone else can cheat as much as
they want, aslong as they still lose. (Actualy, thisis not really true. Someone can, while losing,
collect data on another player’s poker style.) So, let’slook at cases in which different players win.

If Alice wins, sherevedls her hand and her keys. Bob can use Alice' s private key to confirm that
Alice performed step (2) correctly—that each of the 52 messages corresponded to a different card.
Carol can confirm that Alice is not lying about her hand by encrypting the cards with Alice s public
key and verifying that they are the same as the encrypted messages she sent to her in step (8).

If either Bob or Carol wins, the winner reveals his hand and keys. Alice can confirm that the cards
are legitimate by checking her random strings. She can also confirm that the cards are the ones dealt
by encrypting the cards with the winner’ s public key and verifying that they are the same as the
encrypted messages she received in step (3) or (5).

This protocol isn't secure against collusion among malicious players. Alice and another player can
effectively gang up on the third and together swindle that player out of everything without raising
suspicion. Therefore, it isimportant to check all the keys and random strings every time the players
reveal their hands. And if you’ re sitting around the virtual table with two people who never reveal
their hands whenever one of them isthe dealer (Alice, in the previous protocol), stop playing.

Understand that while thisis al interesting theory, actually implementing it on a computer is an
arduous task. A Sparc implementation with three players on separate workstations takes eight hours
to shuffle adeck of cards, let alone play an actual game [513].

Attacks against Poker Protocols

Cryptographers have shown that a small amount of information is leaked by these poker protocols if
the RSA public-key algorithm is used [453, 573]. Specifically, if the binary representation of the
card is aquadratic residue (see Section 11.3), then the encryption of the card is also a quadratic
residue. This property can be used to “mark” some cards—all the aces, for example. This does not
reveal much about the hands, but in a game such as poker even atiny bit of information can be an
advantage in the long run.

Shafi Goldwasser and Silvio Micali [624] devel oped a two-player mental-poker protocol that fixes
this problem, athough its complexity makesit far more theoretical than practical. A general n-
player poker protocol that eliminates the problem of information leakage was developed in [389].

Other research on poker protocols can be found in [573, 1634, 389]. A complicated protocol that
allows playersto not reveal their hands can be found in [390]. Don Coppersmith discusses two ways
to cheat at mental poker using the RSA algorithm [370].

Anonymous Key Distribution

Whileit isunlikely that anyone is going to use this protocol to play poker viamodem, Charles
Pfleeger discusses a situation in which this type of protocol would come in handy [1244].

Consider the problem of key distribution. If we assume that people cannot generate their own keys
(they might have to be of a certain form, or have to be signed by some organization, or something
similar), we have to set up a Key Distribution Center to generate and distribute keys. The problem is
that we have to figure out some way of distributing keys such that no one, including the server, can
figure out who got which key.

This protocol solves the problem:

(1) Alice generates a public-key/private-key key pair. For this protocol, she keeps both keys
secret.

(2) The KDC generates a continuous stream of keys.

(3) The KDC encrypts the keys, one by one, with its own public key.

(4) The KDC transmits the encrypted keys, one by one, onto the network.

(5) Alice chooses akey at random.

(6) Alice encrypts the chosen key with her public key.

(7) Alicewaits awhile (long enough so the server has no idea which key she has chosen) and
sends the double-encrypted key back to the KDC.

(8) The KDC decrypts the double-encrypted key with its private key, leaving a key encrypted
with Alice s public key.

(9) The server sends the encrypted key back to Alice.

(10) Alice decryptsthe key with her private key.

Eve, sitting in the middle of this protocol, has no ideawhat key Alice chose. She sees a continuous
stream of keys go by in step (4). When Alice sends the key back to the server in step (7), itis
encrypted with her public key, which is also secret during this protocol. Eve has no way of
correlating it with the stream of keys. When the server sends the key back to Alicein step (9), itis
also encrypted with Alice’s public key. Only when Alice decrypts the key in step (10) isthe key
revealed.

If you use RSA, this protocol leaks information at the rate of one bit per message. It’s the quadratic
residues again. If you're going to distribute keys in this manner, make sure this leakage isn’t enough
to matter. Also, the stream of keys from the KDC must be great enough to preclude a brute-force
attack. Of course, if Alice can’t trust the KDC, then she shouldn’t be getting keys from it. A
malicious KDC could presumably keep records of every key it generates. Then, it could search them
all to determinewhichisAlice's.

This protocol also assumesthat Alice is going to act fairly. There are things she can do, using RSA,
to get more information than she might otherwise. Thisis not a problem in our scenario, but can be
in other circumstances.

4.12 One-Way Accumulators
Aliceisamember of Cabal, Inc. Occasionally she has to meet with other membersin dimly lit

restaurants and whisper secrets back and forth. The problem is that the restaurants are so dimly lit
that she has trouble knowing if the person across the table from her is also a member.

Cabal Inc. can choose from several solutions. Every member can carry a membership list. This has
two problems. One, everyone now hasto carry alarge database, and two, they have to guard that
membership list pretty carefully. Alternatively, atrusted secretary could issue digitally signed ID
cards. This has the added advantage of allowing outsiders to verify members (for discounts at the
local grocery store, for example), but it requires atrusted secretary. Nobody at Cabal, Inc. can be
trusted to that degree.

A novel solution isto use something called a one-way accumulator [116]. Thisis sort of like a one-
way hash function, except that it is commutative. That is, it is possible to hash the database of
membersin any order and get the same value. Moreover, it is possible to add members into the hash
and get anew hash, again without regard to order.

S0, here’ swhat Alice does. She calculates the accumulation of every member’ s name other than
herself. Then she saves that single value along with her own name. Bob, and every other member,
does the same. Now, when Alice and Bob meet in the dimly lit restaurant, they simply trade
accumulations and names with each other. Alice confirms that Bob’s name added to his
accumulation is equal to Alice's name added to her accumulation. Bob does the same. Now they
both know that the other is amember. And at the same time, neither can figure out the identities of
any other member.

Even better, nonmembers can be given the accumulation of everybody. Now Alice can verify her
membership to a nonmember (for membership discounts at their local counterspy shop, perhaps)
without the nonmember being able to figure out the entire membership list.

New members can be added just by sending around the new names. Unfortunately, the only way to
delete amember isto send everyone anew list and have them recompute their accumulations. But
Cabal, Inc. only hasto do that if amember resigns; dead members can remain on the list. (Oddly
enough, this has never been a problem.)

Thisisaclever idea, and has applications whenever you want the same effect as digital signatures
without a centralized signer.

4.13 All-or-Nothing Disclosur e of Secrets

Imagine that Alice is aformer agent of the former Soviet Union, now unemployed. In order to make
money, Alice sells secrets. Anyone who iswilling to pay the price can buy a secret. She even has a
catalog. All her secrets are listed by number, with tantalizing titles: “Where is immy Hoffa?’, “Who
is secretly controlling the Trilateral Commission?’, “Why does Boris Y eltsin always look like he
swallowed alive frog?’, and so on.

Alice won’'t give away two secrets for the price of one or even partial information about any of the
secrets. Bob, a potential buyer, doesn’t want to pay for random secrets. He also doesn’t want to tell
Alice which secrets he wants. It’s none of Alice's business, and besides, Alice could then add “what
secrets Bob isinterested in” to her catalog.

A poker protocol won't work in this case, because at the end of the protocol Alice and Bob haveto
reveal their hands to each other. There are also tricks Bob can do to learn more than one secret.

The solution is called all-or-nothing disclosur e of secrets (ANDOS) [246] because, as soon as Bob
has gained any information whatsoever about one of Alice’s secrets, he has wasted his chance to
learn anything about any of the other secrets.

There are several ANDOS protocols in the cryptographic literature. Some of them are discussed in
Section 23.9.

4.14 Key Escrow
This excerpt isfrom Silvio Micali’ sintroduction to the topic [1084]:

Currently, court-authorized line tapping is an effective method for securing criminals to
justice. More importantly, in our opinion, it also prevents the further spread of crime by
deterring the use of ordinary communication networks for unlawful purposes. Thus,
there is alegitimate concern that widespread use of public-key cryptography may be a
big boost for criminal and terrorist organizations. Indeed, many bills propose that a
proper governmental agency, under circumstances allowed by law, should be able to
obtain the clear text of any communication over a public network. At the present time,
this requirement would trandate into coercing citizens to either (1) using weak
cryptosystems—i.e., cryptosystems that the proper authorities (but also everybody else!)
could crack with amoderate effort—or (2) surrendering, a priori, their secret key to the
authority. It is not surprising that such alternatives have legitimately alarmed many
concerned citizens, generating as reaction the feeling that privacy should come before
national security and law enforcement.

Key escrow isthe heart of the U.S. government’s Clipper program and its Escrowed Encryption
Standard. The challenge here isto develop a cryptosystem that both protects individual privacy but at
the same time alows for court-authorized wiretaps.

The Escrowed Encryption Standard gets its security from tamperproof hardware. Each encryption
chip has aunique ID number and secret key. Thiskey is split into two pieces and stored, along with
the ID number, by two different escrow agencies. Every time the chip encrypts adatafile, it first
encrypts the session key with this unique secret key. Then it transmits this encrypted session key and
its ID number over the communications channel. When some law enforcement agency wantsto
decrypt traffic encrypted with one of these chips, it listens for the ID number, collects the appropriate
keys from the escrow agencies, XORs them together, decrypts the session key, and then uses the
session key to decrypt the message traffic. There are more complications to make this scheme work
in the face of cheaters; see Section 24.16 for details. The same thing can be done in software, using
public-key cryptography [77, 1579, 1580, 1581].

Micali calshisideafair cryptosystems[1084, 1085]. (The U.S. government reportedly paid Micali
$1, 000, 000 for the use of his patents [1086, 1087] in their Escrowed Encryption Standard; Banker’s
Trust then bought Micali’ s patent.) In these cryptosystems, the private key is broken up into pieces
and distributed to different authorities. Like a secret sharing scheme, the authorities can get together
and reconstruct the private key. However, the pieces have the additional property that they can be
individually verified to be correct, without reconstructing the private key.

Alice can create her own private key and give a piece to each of n trustees. None of these trustees
can recover Alice' s private key. However, each trustee can verify that his pieceisavalid piece of the
private key; Alice cannot send one of the trustees arandom-bit string and hope to get away with it. If
the courts authorize a wiretap, the relevant law enforcement authorities can serve a court order on the
n trustees to surrender their pieces. With all n pieces, the authorities reconstruct the private key and
can wiretap Alice’s communications lines. On the other hand, Mallory hasto corrupt all n trusteesin
order to be able to reconstruct Alice’ s key and violate her privacy.

Here' s how the protocol works:

(1) Alice creates her private-key/public-key key pair. She splits the private key into several
public pieces and private pieces.

(2) Alice sends apublic piece and corresponding private piece to each of the trustees. These
messages must be encrypted. She also sends the public key to the KDC.

(3) Each trustee, independently, performs a calculation on its public piece and its private piece
to confirm that they are correct. Each trustee stores the private piece somewhere secure and
sends the public piece to the KDC.

(4) The KDC performs another calculation on the public pieces and the public key. Assuming
that everything is correct, it signs the public key and either sends it back to Alice or postsitin
a database somewhere.

If the courts order awiretap, then each of the trustees surrenders his or her piece to the KDC, and the
KDC can reconstruct the private key. Before this surrender, neither the KDC nor any individual
trustee can reconstruct the private key; al the trustees are required to reconstruct the key.

Any public-key cryptography algorithm can be made fair in this manner. Some particular algorithms
are discussed in Section 23.10. Micali’ s paper [1084, 1085] discusses ways to combine thiswith a
threshold scheme, so that a subset of the trustees (e.g., three out of five) is required to reconstruct the
private key. He also shows how to combine this with oblivious transfer (see Section 5.5) so that the
trustees do not know whose private key is being reconstructed.

Fair cryptosystems aren’t perfect. A criminal can exploit the system, using a subliminal channel (see
Section 4.2) to embed another secret key into his piece. Thisway, he can communicate securely with
someone else using this subliminal key without having to worry about court-authorized wiretapping.
Another protocol, called failsafe key escrowing, solves this problem [946, 833]. Section 23.10
describes the algorithm and protocol.

The Palitics of Key Escrow

Aside from the government’ s key-escrow plans, several commercial key-escrow proposals are
floating around. This leads to the obvious question: What are the advantages of key-escrow for the
user?

Well, there really aren’t any. The user gains nothing from key escrow that he couldn’t provide
himself. He can already back up his keys if he wants (see Section 8.8). Key-escrow guarantees that
the police can eavesdrop on his conversations or read his data files even though they are encrypted. It
guarantees that the NSA can eavesdrop on hisinternational phone calls—without a warrant—even
though they are encrypted. Perhaps he will be allowed to use cryptography in countries that now ban
it, but that seemsto be the only advantage.

Key escrow has considerable disadvantages. The user hasto trust the escrow agents’ security
procedures, as well as the integrity of the people involved. He has to trust the escrow agents not to
change their policies, the government not to change its laws, and those with lawful authority to get
his keysto do so lawfully and responsibly. Imagine amajor terrorist attack in New Y ork; what sorts
of limits on the police would be thrown aside in the aftermath?

It is hard to imagine escrowed encryption schemes working as their advocates imagine without some
kind of legal pressure. The obvious next step is a ban on the use of non-escrowed encryption. Thisis
probably the only way to make a commercia system pay, and it’s certainly the only way to get
technologically sophisticated criminals and terrorists to useiit. It’s not clear how difficult outlawing
non-escrowed cryptography will be, or how it will affect cryptography as an academic discipline.
How can | research software-oriented cryptography agorithms without having software non-
escrowed encryption devices in my possession; will | need a special license?

And there are legal questions. How do escrowed keys affect users’ liability, should some encrypted
data get out? If the U.S. government is trying to protect the escrow agencies, will there be the
implicit assumption that if the secret was compromised by either the user or the escrow agency, then
it must have been the user?

What if amajor key-escrow service, either government or commercial, had its entire escrowed key
database stolen? What if the U.S. government tried to keep this quiet for awhile? Clearly, thiswould
have an impact on users’ willingness to use key escrow. If it’s not voluntary, a couple of scandals
like this would increase political pressure to either make it voluntary, or to add complex new
regulations to the industry.

Even more dangerous is a scandal where it becomes public that political opponent of the current
administration, or some outspoken critic of some intelligence or police agencies has been under
surveillance for years. This could raise public sentiment strongly against escrowed encryption.

If signature keys are escrowed as well as encryption keys, there are additional issues. Isit acceptable
for the authorities to use signature keys to run operations against suspected criminals? Will the
authenticity of signatures based on escrowed keys be accepted in courts? What recourse do users
have if the authorities actually do use their signature keysto sign some unfavorable contract, to help
out a state-supported industry, or just to steal money?

The globalization of cryptography raises an additional set of questions. Will key-escrow policies be
compatible across national borders? Will multi-national corporations have to keep separate escrowed
keysin every country to stay in compliance with the various local laws? Without some kind of
compatibility, one of the supposed advantages of key-escrow schemes (international use of strong
encryption) falls apart.

What if some countries don’t accept the security of escrow agencies on faith? How do users do
business there? Are their digital contracts upheld by their courts, or is the fact that their signature key
isheld in escrow in the U.S. going to allow them to claim in Switzerland that someone else could
have signed this electronic contract? Or will there be specia waivers for people who do businessin
such countries?

And what about industrial espionage? There is no reason to believe that countries which currently
conduct industrial espionage for their important or state-run companies will refrain from doing so on
key-escrowed encryption systems. Indeed, since virtually no country is going to alow other
countries to oversee its intelligence operations, widespread use of escrowed encryption will probably
increase the use of wiretaps.

Even if countries with good civil rights records use key escrow only for the legitimate pursuit of
criminals and terrorists, it’s certain to be used elsewhere to keep track of dissidents, blackmail
political opponents, and so on. Digital communications offer the opportunity to do a much more
thorough job of monitoring citizens' actions, opinions, purchases, and associations than is possible in
an analog world.

It's not clear how thiswill affect commercial key escrow, except that 20 years from now, selling
Turkey or China a ready-made key-escrow system may look alot like selling shock batons to South
Africain 1970, or building a chemical plant for Irag in 1980. Even worse, effortless and untraceable
tapping of communications may tempt a number of governments into tracking many of their citizens
communications, even those which haven't generally tried to do so before. And there’ s no guarantee
that liberal democracies will be immune to this temptation.

Chapter 5
Advanced Protocols

5.1 Zero-Knowledge Proofs
Here s another story:

Alice: “I know the password to the Federal Reserve System computer, the ingredientsin
McDonald' s secret sauce, and the contents of VVolume 4 of Knuth.”

Bob: “No, you don't.”

Alice: “Yes, | do.”

Bob: “Do not!”

Alice: “Do too!”

Bob: “Proveit!”

Alice: “All right. I'll tell you.” She whispersin Bob's ear.

Bob: “That’sinteresting. Now | know it, too. I’m going to tell The Washington Post.”

Alice: “Oops.”
Unfortunately, the usual way for Alice to prove something to Bob isfor Aliceto tell him. But then
he knowsiit, too. Bob can then tell anyone else he wants to and Alice can do nothing about it. (In the
literature, different characters are often used in these protocols. Peggy is usually cast as the prover
and Victor isthe verifier. These names appear in the upcoming examples, instead of Alice and Bob.)
Using one-way functions, Peggy could perform a zer o-knowledge proof [626]. This protocol proves
to Victor that Peggy does have a piece of information, but it does not give Victor any way to know
what the information is.
These proofs take the form of interactive protocols. Victor asks Peggy a series of questions. If Peggy
knows the secret, she can answer al the questions correctly. If she does not, she has some chance—
50 percent in the following examples—of answering correctly. After 10 or so questions, Victor will

be convinced that Peggy knows the secret. Y et none of the questions or answers gives Victor any
information about Peggy’ s information—only about her knowledge of it.

Basic Zero-Knowledge Protocol
Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with a story about a cave
[1281]. The cave, illustrated in Figure 5.1, has a secret. Someone who knows the magic words can

open the secret door between C and D. To everyone else, both passages |ead to dead ends.

Peggy knows the secret of the cave. She wants to prove her knowledge to Victor, but she doesn’'t
want to reveal the magic words. Here’' s how she convinces him:

(1) Victor stands at point A.
(2) Peggy walks all the way into the cave, either to point C or point D.

(3) After Peggy has disappeared into the cave, Victor walksto point B.
(4) Victor shoutsto Peggy, asking her either to:
(&) come out of the left passage or
(b) come out of the right passage.
(5) Peggy complies, using the magic words to open the secret door if she hasto.
(6) Peggy and Victor repeat steps (1) through (5) n times.

Assume that Victor has a camcorder and records everything he sees. He records Peggy disappearing
into the cave, he records when he shouts out where he wants Peggy to come out from, and he records
Peggy coming out. Herecords all n trias. If he showed this recording to Carol, would she believe
that Peggy knew the magic words to open the door? No. What if Peggy and Victor had agreed
beforehand what Victor would call out, and Peggy would make sure that she went into that path.
Then she could come out where Victor asked her every time, without knowing the magic words. Or
maybe they couldn’t do that. Peggy would go into one of the passages and Victor would call out a
random request. If Victor guessed right, great; if he didn’t, they would edit that trial out of the
camcorder recording. Either way, Victor can get a recording showing exactly the same sequence of
eventsasin area proof where Peggy knew the magic words.

Figure5.1 The zero-knowledge cave.

This shows two things. One, it isimpossible for Victor to convince a third party of the proof’s
validity. And two, it proves that the protocol is zero-knowledge. In the case where Peggy did not
know the magic words, Victor will obviously not learn anything from watching the recording. But
since there is no way to distinguish areal recording from afaked recording, Victor cannot learn
anything from the real proof—it must be zero knowledge.

The technique used in this protocol is called cut and choose, because of its similarity to the classic
protocol for dividing anything fairly:

(1) Alice cutsthething in half.
(2) Bob chooses one of the halves for himself.
(3) Alice takesthe remaining half.

Itisin Alice’ s best interest to divide fairly in step (1), because Bob will choose whichever half he
wantsin step (2). Michael Rabin was the first person to use the cut-and-choose techniquein
cryptography [1282]. The concepts of inter active protocol and zero-knowledge were formalized
later [626,627].

The cut-and-choose protocol works because there is no way Peggy can repeatedly guess which side
Victor will ask her to come out of. If Peggy doesn’t know the secret, she can only come out the way
she came in. She has a 50 percent chance of guessing which side Victor will ask in each round
(sometimes called an accr editation) of the protocol, so she has a 50 percent chance of fooling him.
The chance of her fooling him in two rounds is 25 percent, and the chance of her fooling him all n

timesis1in 2". After 16 rounds, Peggy has a1 in 65,536 chance of fooling Victor. Victor can safely
assume that if all 16 of Peggy’ s proofs are valid, then she must know the secret words to open the
door between points C and D. (The cave analogy isn't perfect. Peggy can simply walk in one side

and out the other; there’ s no need for any cut-and-choose protocol. However, mathematical zero
knowledge requiresit.)

Assume that Peggy knows some information, and furthermore that the information is the solution to
a hard problem. The basic zero-knowledge protocol consists of several rounds.

(1) Peggy uses her information and arandom number to transform the hard problem into
another hard problem, one that isisomorphic to the original problem. She then uses her
information and the random number to solve this new instance of the hard problem.
(2) Peggy commits to the solution of the new instance, using a bit-commitment scheme.
(3) Peggy revealsto Victor the new instance. Victor cannot use this new problem to get any
information about the original instance or its solution.
(4) Victor asks Peggy either to:
(a) proveto him that the old and new instances are isomorphic (i.e., two different
solutions to two related problems), or
(b) open the solution she committed to in step (2) and prove that it is a solution to the
new instance.
(5) Peggy complies.
(6) Peggy and Victor repeat steps (1) through (5) n times.

Remember the camcorder in the cave protocol ? Y ou can do the same thing here. Victor can make a
transcript of the exchange between him and Peggy. He cannot use this transcript to convince Caral,
because he can always collude with Peggy to build a simulator that fakes Peggy’ s knowledge. This
argument can be used to prove that the proof is zero-knowledge.

The mathematics behind this type of proof is complicated. The problems and the random
transformation must be chosen carefully, so that Victor does not get any information about the
solution to the original problem, even after many iterations of the protocol. Not all hard problems
can be used for zero-knowledge proofs, but alot of them can.

Graph | somorphism

An example might go along way to explain this concept; this one comes from graph theory
[619,622]. A graph is anetwork of lines connecting different points. If two graphs are identical
except for the names of the points, they are called isomor phic. For an extremely large graph, finding
whether two graphs are isomorphic can take centuries of computer time; it’s one of those NP-
complete problems discussed in Section 11.1.

Assume that Peggy knows the isomorphism between the two graphs, G; and G,,. The following
protocol will convince Victor of Peggy’s knowledge:

(1) Peggy randomly permutes G, to produce another graph, H, that isisomorphic to G;.
Because Peggy knows the isomorphism between H and G,, she also knows the isomorphism
between H and G,,. For anyone €lse, finding an isomorphism between G, and H or between G,
and H isjust as hard as finding an isomorphism between G, and G,,.

(2) Peggy sendsH to Victor.
(3) Victor asks Peggy either to:
(@) provethat H and G, areisomorphic, or

(b) provethat H and G, are isomorphic.

(4) Peggy complies. She either:
(@) provesthat H and G, are isomorphic, without proving that H and G, are isomorphic,

or
(b) provesthat H and G, areisomorphic, without proving that H and G, are

isomorphic.
(5) Peggy and Victor repeat steps (1) through (4) n times.

If Peggy does not know an isomorphism between G, and G,, she cannot create graph H which is
isomorphic to both. She can create a graph that is either isomorphic to G, or one that isisomorphic
to G, Like the previous example, she has only a 50 percent chance of guessing which proof Victor
will ask her to perform in step (3).

This protocol doesn’t give Victor any useful information to aid him in figuring out an isomorphism
between G, and G,,. Because Peggy generates anew graph H for each round of the protocol, he can

get no information no matter how many rounds they go through the protocol. He won't be able to
figure out an isomorphism between G, and G, from Peggy’s answers.

In each round, Victor receives a new random permutation of H, along with an isomorphism between
H and either G, or G,. Victor could just as well have generated this by himself. Because Victor can

create a simulation of the protocal, it can be proven to be zero-knowledge.
Hamiltonian Cycles

A variant of this example was first presented by Manuel Blum [196]. Peggy knows acircular,
continuous path along the lines of a graph that passes through each point exactly once. Thisis called
aHamiltonian cycle. Finding a Hamiltonian cycle is another hard problem. Peggy has this piece of
information—she probably got it by creating the graph with a certain Hamiltonian cycle—and thisis
what she wantsto convince Victor that she knows.

Peggy knows the Hamiltonian cycle of agraph, G. Victor knows G, but not the Hamiltonian cycle.
Peggy wantsto prove to Victor that she knows this Hamiltonian cycle without revealing it. Thisis
how she doesiit:

(1) Peggy randomly permutes G. She moves the points around and changes their labelsto
make a new graph, H. Since G and H are topol ogically isomorphic (i.e., the same graph), if she
knows the Hamiltonian cycle of G then she can easily find the Hamiltonian cycle of H. If she
didn’t create H herself, determining the isomorphism between two graphs would be another
hard problem; it could also take centuries of computer time. She then encryptsH to get H”.
(This has to be a probabilistic encryption of each linein H, that is, an encrypted O or an
encrypted 1 for each linein H.)
(2) Peggy gives Victor acopy of H".
(3) Victor asks Peggy either to:
(a) proveto himthat H" isan encryption of an isomorphic copy of G, or
(b) show him aHamiltonian cycle for H.
(4) Peggy complies. She either:
(a) provesthat H isan encryption of an isomorphic copy of G by revealing the
permutations and decrypting everything, without showing a Hamiltonian cycle for either
GorH,or
(b) showsaHamiltonian cycle for H by decrypting only those lines that constitute a
Hamiltonian cycle, without proving that G and H are topologically isomorphic.
(5) Peggy and Victor repeat steps (1) through (4) n times.

If Peggy is honest, she can provide either proof in step (4) to Victor. However, if she does not know
aHamiltonian cycle for G, she cannot create an encrypted graph H” which can meet both challenges.

The best she can do isto create a graph that is either isomorphic to G or one that has the same
number of points and lines and a valid Hamiltonian cycle. While she has a 50 percent chance of
guessing which proof Victor will ask her to perform in step (3), Victor can repeat the protocol
enough times to convince himself that Peggy knows a Hamiltonian cycle for G.

Parallel Zero-Knowledge Proofs

The basic zero-knowledge protocol involves n exchanges between Peggy and Victor. Why not do
themall in paraldl:

(1) Peggy uses her information and n random numbers to transform the hard problem into n
different isomorphic problems. She then uses her information and the random numbers to
solve the n new hard problems.
(2) Peggy commits to the solution of the n new hard problems.
(3) Peggy revealsto Victor the n new hard problems. Victor cannot use these new problems to
get any information about the original problems or its solutions.
(4) For each of the n new hard problems, Victor asks Peggy either to:
(a) proveto him that the old and new problems are isomorphic, or
(b) open the solution she committed to in step (2) and prove that it is a solution to the
new problem.
(5) Peggy compliesfor each of the n new hard problems.

Unfortunately, it’s not that smple. This protocol does not have the same zero-knowledge properties
asthe previous protocol. In step (4), Victor can choose the challenges as a one-way hash of all the
values committed to in the second step, thus making the transcript nonsimulatable. It is still zero-
knowledge, but of adifferent sort. It seemsto be secure in practice, but no one knows how to prove
it. We do know that in certain circumstances, certain protocols for certain problems can berunin
parallel while retaining their zero-knowledge property [247,106,546,616].

Noninteractive Zero-Knowledge Proofs

Carol can’t be convinced because the protocol is interactive, and sheis not involved in the
interaction. To convince Carol, and anyone else who may be interested, we need a noninteractive
protocol.

Protocols have been invented for noninteractive zero-knowledge proofs [477,198,478,197]. These
protocols do not require any interaction; Peggy could publish them and thereby prove to anyone who
takes the time to check that the proof isvalid.

The basic protocol is similar to the parallel zero-knowledge proof, but a one-way hash function takes
the place of Victor:

(1) Peggy uses her information and n random numbers to transform the hard problem into n
different isomorphic problems. She then uses her information and the random numbers to
solve the n new hard problems.
(2) Peggy commitsto the solution of the n new hard problems.
(3) Peggy usesall of these commitments together as a single input to a one-way hash function.
(After al, the commitments are nothing more than bit strings.) She then saves the first n bits of
the output of this one-way hash function.
(4) Peggy takesthe n bits generated in step (3). For each ith new hard problem in turn, she
takes theith bit of those n bits and:
(a) ifitisa0, she provesthat the old and new problems are isomorphic, or
(b) if itisal, she opens the solution she committed to in step (2) and provesthat itisa
solution to the new problem.

(5) Peggy publishes all the commitments from step (2) as well as the solutionsin step (4).
(6) Victor or Carol or whoever else isinterested, verifies that steps (1) through (5) were
executed properly.

Thisis amazing: Peggy can publish some data that contains no information about her secret, but can
be used to convince anyone of the secret’s existence. The protocol can also be used for digital
signature schemes, if the challenge is set as a one-way hash of both the initial messages and the
message to be signed.

This works because the one-way hash function acts as an unbiased random-bit generator. For Peggy
to cheat, she has to be able to predict the output of the one-way hash function. (Remember, if she
doesn’t know the solution to the hard problem, she can do either (a) or (b) of step (4), but not both.)
If she somehow knew what the one-way hash function would ask her to do, then she could cheat.
However, thereis no way for Peggy to force the one-way function to produce certain bits or to guess
which bits it will produce. The one-way function is, in effect, Victor’s surrogate in the protocol—
randomly choosing one of two proofsin step (4).

In a noninteractive protocol, there must be many more iterations of the challenge/reply sequence.
Peggy, not Victor, picks the hard problems using random numbers. She can pick different problems,
hence different commitment vectors, till the hash function produces something she likes. In an

interactive protocol, 10 iterations—a probability of 1in 210 (1in 1024) that Peggy can cheat—may
be fine. However, that’s not enough for noninteractive zero-knowledge proofs. Remember that
Mallory can always do either (a) or (b) of step (4). He can try to guess which he will be asked to do,
go through steps (1) through (3), and see if he guessed right. If he didn’t, he can try again—
repeatedly. Making 1024 guesses is easy on a computer. To prevent this brute-force attack,
noninteractive protocols need 64 iterations, or even 128 iterations, to be valid.

Thisisthe whole point of using a one-way hash function: Peggy cannot predict the output of the
hash function because she cannot predict its input. The commitments which are used as the input are
only known after she solves the new problems.

Generalities

Blum proved that any mathematical theorem can be converted into a graph such that the proof of that
theorem is equivalent to proving a Hamiltonian cycle in the graph. The general case that any NP
statement has a zero-knowledge proof, assuming one-way functions and therefore good encryption
algorithms, was proved in [620]. Any mathematical proof can be converted into a zero-knowledge
proof. Using this technique, a researcher can prove to the world that he knows the proof of a
particular theorem without revealing what that solution is. Blum could have published these results
without revealing them.

There are also minimum-disclosur e proofs [590]. In a minimum-disclosure proof, the following
properties hold:

1. Peggy cannot cheat Victor. If Peggy does not know the proof, her chances of convincing
Victor that she knows the proof are negligible.

2. Victor cannot cheat Peggy. He doesn't get the slightest hint of the proof, apart from the fact
that Peggy knows the proof. In particular, Victor cannot demonstrate the proof to anyone else
without proving it himself from scratch.

Zero-knowledge proofs have an additional condition:

3. Victor learns nothing from Peggy that he could not learn by himself without Peggy, apart
from the fact that Peggy knows the proof.

Thereis considerable mathematical difference between proofs that are only minimum-disclosure and
those that are zero-knowledge. That distinction is beyond the scope of this book, but more
sophisticated readers are welcome to peruse the references. The concepts were introduced in
[626,619,622]. Further elaboration on their ideas, based on different mathematical assumptions, were
developed in [240,319,239].

There are also different kinds of zero-knowledge proofs:

— Perfect. Thereisasimulator that gives transcripts identically distributed to real transcripts
(the Hamiltonian cycle and graph isomorphism examples).

— Statistical. Thereisasimulator that gives transcripts identically distributed to real
transcripts, except for some constant number of exceptions.

— Computational. Thereis asimulator that gives transcripts indistinguishable from real
transcripts.

— No-use. A simulator may not exist, but we can prove that Victor will not learn any
polynomial amount of information from the proof (the parallel example).

Over the years, extensive work, both theoretical and applied, has been done on minimum-disclosure
and zero-knowledge proofs. Mike Burmester and Yvo Desmedt invented br oadcast inter active
proofs, where one prover can broadcast a zero-knowledge interactive proof to alarge group of
verifiers [280]. Cryptographers proved that everything that can be proven with an interactive proof
can also be proven with a zero-knowledge interactive proof [753,137].

A good survey article on the topic is [548]. For additional mathematical details, variations, protocols,
and applications, consult
[590,619,240,319,620,113,241,1528,660,238,591,617,510,592,214,104,216,832,
97,939,622,482,615,618,215,476,71]. A lot has been written on this subject.

5.2 Zero-Knowledge Proofs of | dentity

In the real world, we often use physical tokens as proofs of identity: passports, driver’s licenses,
credit cards, and so on. The token contains something that links it to a person: a picture, usually, or a
signature, but it could almost as easily be a thumbprint, aretinal scan, or a dental x-ray. Wouldn't it
be nice to do the same thing digitally?

Using zero-knowledge proofs as proofs of identity was first proposed by Uriel Feige, Amos Fiat, and
Adi Shamir [566,567]. Alice s private key becomes afunction of her “identity.” Using a zero-
knowledge proof, she proves that she knows her private key and therefore proves her identity.
Algorithmsfor this can be found in Section 23.11.

Thisideais quite powerful. It allows a person to prove hisidentity without any physical token.
However, it’s not perfect. Here are some abuses.

The Chess Grandmaster Problem

Here' s how Alice, who doesn’t even know the rules to chess, can defeat a grandmaster. (Thisis
sometimes called the Chess Grandmaster Problem.) She challenges both Gary Kasparov and Anatoly
Karpov to agame, at the same time and place, but in separate rooms. She plays white against
Kasparov and black against Karpov. Neither grandmaster knows about the other.

Karpov, as white, makes his first move. Alice records the move and walks into the room with
Kasparov. Playing white, she makes the same move against Kasparov. Kasparov makes hisfirst
move as black. Alice records the move, walks into the room with Karpov, and makes the same move.
This continues, until she wins one game and loses the other, or both games end in adraw.

In reality, Kasparov is playing Karpov and Alice is ssmply acting as the middleman, mimicking the
moves of each grandmaster on the other’ s board. However, if neither Karpov nor Kasparov knows
about the other’ s presence, each will be impressed with Alice's play.

This kind of fraud can be used against zero-knowledge proofs of identity [485,120]. While Aliceis
proving her identity to Mallory, Mallory can ssmultaneously prove to Bob that heis Alice.

The Mafia Fraud

When discussing his zero-knowledge identification protocol, Adi Shamir [1424] said: “1 could go to
aMafia-owned store a million successive times and they will still not be able to misrepresent
themselves as me.”

Here' s how the Mafia can. Aliceis eating at Bob’s Diner, aMafia-owned restaurant. Carol is
shopping at Dave’s Emporium, an expensive jewelry store. Bob and Carol are both members of the
Mafia and are communicating by a secret radio link. Alice and Dave are unaware of the fraud.

At the end of Alice’'s meal, when sheisready to pay and prove her identity to Bob, Bob signals
Carol that the fraud is ready to begin. Carol chooses some expensive diamonds and gets ready to
prove her identity to Dave. Now, as Alice proves her identity to Bob, Bob radios Carol and Carol
performs the same protocol with Dave. When Dave asks a question in the protocol, Carol radios the
guestion back to Bob, and Bob asks it of Alice. When Alice answers, Bob radios the correct answer
to Carol. Actually, Aliceisjust proving her identity to Dave, and Bob and Carol are simply sitting in
the middle of the protocol passing messages back and forth. When the protocol finishes, Alice has
proved herself to Dave and has purchased some expensive diamonds (which Carol disappears with).

The Terrorist Fraud

If Aliceiswilling to collaborate with Carol, they can also defraud Dave. In this protocol, Carol isa
well-known terrorist. Aliceis helping her enter the country. Dave is the immigration officer. Alice
and Carol are connected by a secret radio link.

When Dave asks Carol questions as part of the zero-knowledge protocol, Carol radios them back to
Alice, who answers them herself. Carol recites these answersto Dave. In reality, Aliceis proving her
identity to Dave, with Carol acting as a communications path. When the protocol finishes, Dave
thinks that Carol is Alice and lets her into the country. Three days later, Carol shows up at some
government building with a minivan full of explosives.

Suggested Solutions

Both the Mafiaand Terrorist frauds are possible because the conspirators can communicate viaa
secret radio. One way to prevent this requires all identifications to take place inside Faraday cages,
which block all electromagnetic radiation. In the terrorist example, this assures immigration officer
Dave that Carol was not receiving her answers from Alice. In the Mafia example, Bob could ssmply
build afaulty Faraday cagein his restaurant, but jeweler Dave would have a working one; Bob and
Carol would not be able to communicate. To solve the Chess Grandmaster Problem, Alice should be
forced to sit in her seat until the end of agame.

Thomas Beth and Y vo Desmedt proposed another solution, one using accurate clocks [148]. If each
step in the protocol must take place at a given time, no time would be available for the conspirators
to communicate. In the Chess Grandmaster Problem, if every move in each game must be made as a
clock strikes one minute, then Alice will have no time to run from room to room. In the Mafia story,
Bob and Carol will have no time to pass questions and answers to one another.

The Multiple I dentity Fraud

There are other possible abuses to zero-knowledge proofs of identity, also discussed in [485,120]. In
some implementations, there is no check when an individual registers a public key. Hence, Alice can
have several private keys and, therefore, several identities. This can be agreat help if she wantsto
commit tax fraud. Alice can also commit a crime and disappear. First, she creates and publishes
several identities. One of them she doesn’t use. Then, she uses that identity once and commits a
crime so that the person who identifies her is the witness. Then, she immediately stops using that
identity. The witness knows the identity of the person who committed the crime, but if Alice never
uses that identity again—she's untraceable.

To prevent this, there has to be some mechanism by which each person has only one identity. In
[120] the authors suggest the bizarre idea of tamperproof babies who are impossible to clone and
contain a unique number as part of their genetic code. They also suggested having each baby apply
for an identity at birth. (Actually, the parents would have to do this as the baby would be otherwise
occupied.) This could easily be abused; parents could apply for multiple identities at the child’'s
birth. In the end, the uniqueness of an individual is based on trust.

Renting Passports

Alice wantsto travel to Zaire, but that government won't give her avisa. Carol offersto rent her
identity to Alice. (Bob offered first, but there were some obvious problems.) Carol sells Alice her
private key and Alice goes off to Zaire pretending to be Carol.

Carol has not only been paid for her identity, but now she has a perfect aibi. She commits acrime
while Aliceisin Zaire. “Carol” has proved her identity in Zaire; how could she commit a crime back
home?

Of course, Aliceisfreeto commit crimes as well. She does so either before she leaves or after she
returns, near Carol’s home. First she identifies herself as Carol (she has Carol’s private key, so she
can easily do that), then she commits a crime and runs away. The police will come looking for Carol.
Carol will claim she rented her identity to Alice, but who would believe such a nonsensical story?

The problem isthat Aliceisn’'t really proving her identity; sheis proving that she knows a piece of
secret information. It isthe link between that information and the person it belongs to that is being
abused. The tamperproof baby solution would protect against this type of fraud, as would a police
state where all citizens would have to prove their identity very frequently (at the end of each day, at
each street corner, etc.). Biometric methods—fingerprints, retinal scanning, voiceprints, and so on—
may help solve this problem.

Proofs of Membership

Alice wantsto prove to Bob that she is a member of some super-secret organization, but she does not
want to reveal her identity. This problem issimilar but different to proving identity, and has also
been studied [887,906,907,1201,1445]. Some solutions are related to the problem of group
signatures (see Section 4.6).

5.3 Blind Signatures

An essential feature of digital signature protocolsis that the signer knows what heissigning. Thisis
agood idea, except when we want the reverse.

We might want people to sign documents without ever seeing their contents. There are ways that a

signer can almost, but not exactly, know what he is signing. But first things first.
Completely Blind Signatures

Bob isanotary public. Alice wants him to sign a document, but does not want him to have any idea
what he is signing. Bob doesn’t care what the document says; heisjust certifying that he notarized it
at acertain time. Heiswilling to go along with this.

(1) Alice takesthe document and multipliesit by arandom value. Thisrandom valueis called
ablinding factor.

(2) Alice sends the blinded document to Bob.

(3) Bob signs the blinded document.

(4) Alicedivides out the blinding factor, leaving the original document signed by Bob.

This protocol only worksiif the signature function and multiplication are commutative. If they are
not, there are other ways to modify the document other than by multiplying. Some relevant
algorithms appear in Section 23.12. For now, assume that the operation is multiplication and all the
math works.

Can Bob cheat? Can he collect any information about the document that he is signing? If the
blinding factor is truly random and makes the blinded document truly random, he cannot. The
blinded document Bob signs in step (2) looks nothing like the document Alice began with. The
blinded document with Bob’ s signature on it in step (3) looks nothing like the signed document at
the end of step (4). Even if Bob got his hands on the document, with his signature, after completing
the protocol, he cannot prove (to himself or to anyone else) that he signed it in that particular
protocol. He knows that his signatureis valid. He can, like anyone else, verify his signature.
However, thereis no way for him to correlate any information he received during the signing
protocol with the signed document. If he signed a million documents using this protocol, he would
have no way of knowing in which instance he signed which document.

The properties of completely blind signatures are:

1. Bob'ssignature on the document isvalid. The signature is a proof that Bob signed the
document. It will convince Bob that he signed the document if it is ever shown to him. It also
has all of the other properties of digital signatures discussed in Section 2.6.

2. Bob cannot correlate the signed document with the act of signing the document. Even if he
keeps records of every blind signature he makes, he cannot determine when he signed any
given document.

Eve, who isin the middle, watching this protocol, has even less information than Bob.
Blind Signatures

With the completely blind signature protocol, Alice can have Bob sign anything: “Bob owes Alice a
million dollars,” “Bob owes Alice his first-born child,” “Bob owes Alice a bag of chocolates.” The
possibilities are endless. This protocol isn’t useful in many applications.

However, thereis away that Bob can know what he is signing, while still maintaining the useful
properties of a blind signature. The heart of this protocol is the cut-and-choose technique. Consider
this example. Many people enter this country every day, and the Department of Immigration wants
to make sure they are not smuggling cocaine. The officials could search everyone, but instead they
use a probabilistic solution. They will search one-tenth of the people coming in. One person in ten
has his belongings inspected; the other nine get through untouched. Chronic smugglers will get away
with their misdeeds most of the time, but they have a 10 percent chance of getting caught. And if the

court system is effective, the penalty for getting caught once will more than wipe out the gains from
the other nine times.

If the Department of Immigration wants to increase the odds of catching smugglers, they haveto
search more people. If they want to decrease the odds, they have to search fewer people. By
manipulating the probabilities, they control how successful the protocol isin catching smugglers.

The blind signature protocol works in asimilar manner. Bob will be given alarge pile of different
blinded documents. He will open, that is examine, all but one and then sign the last.

Think of the blinded document as being in an envelope. The process of blinding the document is
putting the document in an envelope and the process of removing the blinding factor is opening the
envelope. When the document isin an envelope, nobody can read it. The document is signed by
having a piece of carbon paper in the envelope: When the signer signs the envelope, his signature
goes through the carbon paper and signs the document as well.

This scenario involves a group of counterintelligence agents. Their identities are secret; not even the
counterintelligence agency knows who they are. The agency’ s director wants to give each agent a
signed document stating: “ The bearer of this signed document, (insert agent’s cover name here), has
full diplomatic immunity.” Each of the agents has his own list of cover names, so the agency can't
just hand out signed documents. The agents do not want to send their cover names to the agency; the
enemy might have corrupted the agency’ s computer. On the other hand, the agency doesn’t want to
blindly sign any document an agent givesit. A clever agent might substitute a message like: “ Agent
(name) has retired and collects amillion-dollar-a-year pension. Signed, Mr. President.” In this case,
blind signatures could be useful.

Assume that all the agents have 10 possible cover names, which they have chosen themselves and
which no one else knows. Also assume that the agents don’t care under which cover name they are
going to get diplomatic immunity. Also assume that the agency’s computer isthe Agency’s Large
Intelligent Computing Engine, or ALICE, and that our particular agent is the Bogota Operations
Branch: BOB.

(1) BOB prepares n documents, each using a different cover name, giving himself diplomatic
immunity.

(2) BOB hlinds each of these documents with a different blinding factor.

(3) BOB sends the n blinded documentsto ALICE.

(4) ALICE chooses n— 1 documents at random and asks BOB for the blinding factors for each
of those documents.

(5) BOB sends ALICE the appropriate blinding factors.

(6) ALICE opens (i.e., she removes the blinding factor) n — 1 documents and makes sure they
are correct—and not pension authorizations.

(7) ALICE signsthe remaining document and sendsit to BOB.

(8) Agent removes the blinding factor and reads his new cover name: “The Crimson Streak.”
The signed document gives him diplomatic immunity under that name.

This protocol is secure against BOB cheating. For him to cheat, he would have to predict accurately
which document ALICE would not examine. The odds of him doing this are 1 in n—not very good.
ALICE knows this and feels confident signing a document that she is not able to examine. With this
one document, the protocol is the same as the previous completely blinded signature protocol and
maintains all of its properties of anonymity.

Thereisatrick that makes BOB's chance of cheating even smaller. In step (4), ALICE randomly
chooses n/2 of the documentsto challenge, and BOB sends her the appropriate blinding factorsin
step (5). In step (7), ALICE multiplies together al of the unchallenged documents and signs the

mega-document. In step (8), BOB strips off all the blinding factors. ALICE’ s signature is acceptable
only if itisavalid signature of the product of n/2 identical documents. To cheat BOB has to be able
to guess exactly which subset ALICE will challenge; the odds are much smaller than the odds of
guessing which one document ALICE won't challenge.

BOB has another way to cheat. He can generate two different documents, one that ALICE iswilling
to sign and one that ALICE is not. Then he can find two different blinding factors that transform
each document into the same blinded document. That way, if ALICE asks to examine the document,
BOB gives her the blinding factor that transformsit into the benign document. If ALICE doesn’t ask
to see the document and signsiit, he uses the blinding factor that transforms it into the malevolent
document. While thisis theoretically possible, the mathematics of the particular algorithmsinvolved
make the odds of BOB’ s being able to find such a pair negligibly small. In fact, it can be made as
small as the odds of Bob being able to produce the signature on an arbitrary message himself. This
issue is discussed further in Section 23.12.

Patents
Chaum has patents for several flavors of blind signatures (see Table 5.1).
5.4 Identity-Based Public-Key Cryptography

Alice wants to send a secure message to Bob. She doesn’t want to get his public key from a key
server; she doesn’'t want to verify some trusted third party’ s signature on his public-key certificate;
and she doesn’'t even want to store Bob's public key on her own computer. She just wants to send
him a secure message.

| dentity-based cryptosystems, sometimes called Non-Interactive Key Sharing (NIKS) systems,
solve this problem [1422]. Bob's public key is based on his name and network address (or telephone
number, or physical street address, or whatever). With normal public-key cryptography, Alice needs
asigned certificate that associates Bob's public key with hisidentity. With identity-based
cryptography, Bob's public key is hisidentity. Thisisareally cool idea, and about asideal asyou
can get for amail system: If Alice knows Bob'’s address, she can send him secure mail. It makes the
cryptography about as transparent as possible.

The system is based on Trent issuing private keys to users based on their identity. If Alice s private
key is compromised, she has to change some aspect of her identity to get another one. A serious
problem is designing a system in such away that a collusion of dishonest users cannot forge a key.

A lot of work has been done on the mathematics of these sorts of schemes—maost of it in Japan—
which turn out to be infuriatingly complicated to make secure. Many of the proposed solutions
involve Trent choosing arandom number for each user—in my opinion this defeats the real point of
the system. Some of the algorithms discussed in Chapters 19 and 20 can be identity-based. For
details, algorithms, and cryptanalysis, see
[191,1422,891,1022,1515,1202,1196,908,692,674,1131,1023,1516,1536,1544,63,
1210,314,313,1545,1539,1543,933,1517,748,1228]. An algorithm that does not rely on any random
numbersis[1035]. The system discussed in [1546,1547,1507] is insecure against a chosen-public-
key attack; so isthe system proposed as NIKS-TAS [1542,1540,1541,993,375,1538]. Honestly,
nothing proposed so far is both practical and secure.

TABLES.1
Chaum’s Blind Signature Patents

U.S. PATENT # DATE TITLE

4,759,063 7/19/88 Blind Signature Systems [323]

4,759,064 7/19/88 Blind Unanticipated Signature Systems [324]
4,914,698 3/3/90 One-Show Blind Signature Systems [326]
4,949,380 8/14/90 Returned-Value Blind Signature Systems [328]
4,991,210 2/5/91 Unpredictable Blind Signature Systems [331]

5.5 Oblivious Transfer

Cryptographer Bob is desperately trying to factor a 500-bit number, n. He knows it’ s the product of
five 100-bit numbers, but nothing more. (Thisisaproblem. If he can’t recover the key he'll haveto
work overtime and he'll miss his weekly mental poker game with Alice.)

What do you know? Here comes Alice now:

“I happen to know one factor of the number,” she says, “and I'll sell it to you for $100.
That’s adollar abit.” To show she's serious, she uses a bit-commitment scheme and
commits to each bit individually.

Bob isinterested, but has only $50. Alice is unwilling to lower her price and offers to
sell Bob half the bits for half the price. “It’' |l save you a considerable amount of work,”
she says.

“But how do | know that your number is actually afactor of n? If you show me the
number and let me verify that it isafactor, then | will agree to your terms,” says Bob.

They are at an impasse. Alice cannot convince Bob that her number is afactor of n
without revealing it, and Bob is unwilling to buy 50 bits of a number that could very
well be worthless.

This story, stolen from Joe Kilian [831], introduces the concept of oblivioustransfer. Alice
transmits a group of messages to Bob. Bob receives some subset of those messages, but Alice has no
idea which ones he receives. This doesn’t completely solve the problem, however. After Bob has
received arandom half of the bits, Alice has to convince him that the bits she sent are part of afactor
of n, using a zero-knowledge proof.

In the following protocol, Alice will send Bob one of two messages. Bob will receive one, and Alice
will not know which.

(1) Alice generates two public-key/private-key key pairs, or four keysin all. She sends both
public keysto Bob.

(2) Bob chooses akey in asymmetric algorithm (DES, for example). He chooses one of
Alice s public keys and encrypts his DES key with it. He sends the encrypted key to Alice
without telling her which of her public keys he used to encrypt it.

(3) Alice decrypts Bob's key twice, once with each of her private keys. In one of the cases,
she uses the correct key and successfully decrypts Bob's DES key. In the other case, she uses
the wrong key and only manages to generate a meaningless pile of bits that nonetheless |ook
like arandom DES key. Since she does not know the correct plaintext, she has no ideawhich
iswhich.

(4) Alice encrypts both of her messages, each with a different one of the DES keys she
generated in the previous step (one real and one meaningless) and sends both of them to Bob.

(5) Bob getsone of Alice' s messages encrypted with the proper DES key and the other one
encrypted with the gibberish DES key. When Bob decrypts each of them with his DES key, he
can read one of them,; the other just looks like gibberish to him.

Bob now has one of the two messages from Alice and Alice does not know which one he was able to
read successfully. Unfortunately, if the protocol stopped here it would be possible for Alice to cheat.
Another step is necessary.

(6) After the protocol is complete and both possible results of the transfer are known, Alice
must give Bob her private keys so that he can verify that she did not cheat. After al, she could
have encrypted the same message with both keysin step (4).

At this point, of course, Bob can figure out the second message.

The protocol is secure against an attack by Alice because she has no way of knowing which of the
two DES keysisthe real one. She encrypts them both, but Bob only successfully recovers one of
them—until step (6). It is secure against an attack by Bob because, before step (6), he cannot get
Alice' s private keys to determine the DES key that the other message was encrypted in. This may
still seem like nothing more than a more complicated way to flip coins over amodem, but it has
extensive implications when used in more complicated protocols.

Of course, nothing stops Alice from sending Bob two completely useless messages: “Nyah Nyah”
and “You sucker.” This protocol guarantees that Alice sends Bob one of two messages; it does
nothing to ensure that Bob wants to receive either of them.

Other oblivious transfer protocols are found in the literature. Some of them are noninteractive,
meaning that Alice can publish her two messages and Bob can learn only one of them. He can do this
on his own; he doesn’t have to communicate with Alice [105].

No one redlly cares about being able to do oblivious transfer in practice, but the notion is an
important building block for other protocols. Although there are many types of oblivious transfer—I
have two secrets and you get one; | have n secrets and you get one; | have one secret which you get
with probability 1/2; and so on—they are al equivalent [245,391,395].
5.6 Oblivious Signatures
Honestly, | can’t think of agood use for these, but there are two kinds [346]:
1. Alice has n different messages. Bob can choose one of the n messages for Alice to sign, and
Alice will have no way of knowing which one she signed.
2. Alice has one message. Bob can choose one of n keysfor Aliceto use in signing the
message, and Alice will have no way of knowing which key she used.

It'saneat idea; I’'m sureit has a use somewhere.

5.7 Simultaneous Contract Signing

Contract Signing with an Arbitrator

Alice and Bob want to enter into a contract. They’ ve agreed on the wording, but neither wishes to

sign unless the other signs as well. Face to face, thisis easy: Both sign together. Over a distance,
they could use an arbitrator.

(1) Alicesignsacopy of the contract and sends it to Trent.

(2) Bob signs acopy of the contract and sendsit to Trent.

(3) Trent sends a message to both Alice and Bob indicating that the other has signed the
contract.

(4) Alice signstwo copies of the contract and sends them to Bob.

(5) Bob signs both copies of the contract, keeps one for himself, and sends the other to Alice.
(6) Alice and Bob both inform Trent that they each have a copy of the contract signed by both
of them.

(7) Trent tears up histwo copies of the contract with only one signature each.

This protocol works because Trent prevents either of the parties from cheating. If Bob were to refuse
to sign the contract in step (5), Alice could appeal to Trent for a copy of the contract already signed
by Bob. If Alice were to refuseto sign in step (4), Bob could do the same. When Trent indicates that
he received both contractsin step (3), both Alice and Bob know that the other is bound by the
contract. If Trent does not receive both contracts in steps (1) and (2), he tears up the one he received
and neither party is bound.

Simultaneous Contract Signing without an Arbitrator (Face-to-Face)
If Alice and Bob were sitting face-to-face, they could sign the contract this way [1244]:

(1) Alicesignsthefirst letter of her name and passes the contract to Bob.
(2) Bob signsthefirst letter of his name and passes the contract to Alice.
(3) Alice signsthe second letter of her name and passes the contract to Bob.
(4) Bob signs the second letter of his hame and passes the contract to Alice.
(5) Thiscontinues until both Alice and Bob have signed their entire names.

If you ignore the obvious problem with this protocol (Alice has alonger name than Bab), it works
just fine. After signing only one letter, Alice knows that no judge will bind her to the terms of the
contract. But the letter is an act of good faith, and Bob responds with a similar act of good faith.

After each party has signed several letters, ajudge could probably be convinced that both parties had
signed the contract. The details are murky, though. Surely they are not bound after only the first
letter; just as surely they are bound after they sign their entire names. At what point in the protocol
do they become bound? After signing one-half of their names? Two-thirds of their names? Three-
quarters?

Since neither Alice nor Bob is certain of the exact point at which she or he is bound, each has at |east
some fear that she or he is bound throughout the protocol. At no point can Bob say: “Y ou signed four
lettersand | only signed three. Y ou are bound but | am not.” Bob has no reason not to continue with
the protocol. Furthermore, the longer they continue, the greater the probability that ajudge will rule
that they are bound. Again, there is no reason not to continue with the protocol. After al, they both
wanted to sign the contract; they just didn’t want to sign before the other one.

Simultaneous Contract Signing without an Arbitrator (Not Face-to-Face)

This protocol uses the same sort of uncertainty [138]. Alice and Bob alternate taking baby steps
toward signing until both have signed.

In the protocol, Alice and Bob exchange a series of signed messages of the form: “I agree that with
probability p, | am bound by this contract.”

The recipient of this message can take it to a judge and, with probability p, the judge will consider
the contract to be signed.

(1) Alice and Bob agree on adate by which the signing protocol should be completed.

(2) Alice and Bob decide on a probability difference that they are willing to live with. For
example, Alice might decide that sheis not willing to be bound with a greater probability than
2 percent over Bob's probability. Call Alice’ s difference a; call Bob’s difference b.

(3) Alice sends Bob a signed message with p = a.

(4) Bob sendsAlice asigned messagewithp=a+h.

(5) Let p bethe probability of the message Alice received in the previous step from Baob.
Alice sends Bob a signed message with p” = p + a or 1, whichever is smaller.

(6) Let p bethe probability of the message Bob received in the previous step from Alice. Bob
sends Alice asigned message with p” = p + b or 1, whichever is smaller.

(7) Alice and Bob continue alternating steps (5) and (6) until both have received messages
with p = 1 or until the date agreed to in step (1) has passed.

Asthe protocol proceeds, both Alice and Bob agree to be bound to the contract with a greater and
greater probability. For example, Alice might define her a as 2 percent and Bob might define hisb as
1 percent. (It would be nice if they had chosen larger increments; we will be here for awhile.)

Alice sfirst message might state that she is bound with 2 percent probability. Bob might respond
that he is bound with 3 percent probability. Alice’ s next message might state that she is bound with 5
percent probability and so on, until both are bound with 100 percent probability.

If both Alice and Bob compl ete the protocol by the completion date, all iswell. Otherwise, either
party can take the contract to the judge, along with the other party’ s last signed message. The judge
then randomly chooses a value between 0 and 1 before seeing the contract. If the value is less than
the probability the other party signed, then both parties are bound. If the value is greater than the
probability, then both parties are not bound. (The judge then saves the value, in case he hasto rule on
another matter regarding the same contract.) Thisiswhat is meant by being bound to the contract
with probability p.

That’ s the basic protocol, but it can have more complications. The judge can rule in the absence of
one of the parties. The judge’ s ruling either binds both or neither party; in no situation is one party
bound and the other one not. Furthermore, as long as one party iswilling to have adlightly higher
probability of being bound than the other (no matter how small), the protocol will terminate.

Simultaneous Contract Signing without an Arbitrator (Using Cryptography)

This cryptographic protocol uses the same baby-step approach [529]. DES is used in the description,
although any symmetric algorithm will do.

(1) Both Alice and Bob randomly select 2n DES keys, grouped in pairs. The pairs are nothing
special; they are just grouped that way for the protocol.
(2) Both Alice and Bob generate n pairs of messages, L; and R;: “Thisistheleft haf of my ith

signature” and “Thisistheright half of my ith signature,” for example. The identifier, i, runs
from 1 to n. Each message will probably aso include adigital signature of the contract and a
timestamp. The contract is considered signed if the other party can produce both halves, L, and

R, of asingle signature pair.

(3) Both Alice and Bob encrypt their message pairsin each of the DES key pairs, the left
message with the left key in the pair and the right message with the right key in the pair.

(4) Alice and Bob send each other their pile of 2n encrypted messages, making clear which
messages are which halves of which pairs.

(5) Alice and Bob send each other every key pair using the oblivious transfer protocol for
each pair. That is, Alice sends Bob either the key used to encrypt the left message or the key
used to encrypt the right message, independently, for each of the n pairs. Bob does the same.
They can either alternate sending halves or one can send 100 and then the other—it doesn’t

matter. Now both Alice and Bob have one key in each key pair, but neither knows which
halves the other one has.

(6) Both Alice and Bob decrypt the message halves that they can, using the keys they
received. They make sure that the decrypted messages are valid.

(7) Alice and Bob send each other the first bits of all 2n DES keys.

(8) Alice and Bob repeat step (7) for the second bits of al 2n DES keys, the third bits, and so
on, until all the bits of all the DES keys have been transferred.

(9) Alice and Bob decrypt the remaining halves of the message pairs and the contract is
signed.

(10) Alice and Bob exchange the private keys used during the oblivious transfer protocol in
step (5) and each verifies that the other did not cheat.

Why do Alice and Bob have to go through all thiswork? Let’ s assume Alice wants to cheat and see
what happens. In steps (4) and (5), Alice could disrupt the protocol by sending Bob nonsense bit
strings. Bob would catch thisin step (6), when he tried to decrypt whatever half he received. Bob
could then stop safely, before Alice could decrypt any of Bob’s message pairs.

If Alice were very clever, she could only disrupt half the protocol. She could send one half of each
pair correctly, but send a gibberish string for the other half. Bob has only a 50 percent chance of
receiving the correct half, so half the time Alice could cheat. However, this only worksif there is one
key pair. If there were only two pairs, this sort of deception would succeed 25 percent of the time.
That iswhy n should be large. Alice has to guess correctly the outcome of n oblivious transfer

protocols; she hasa 1 in 2" chance of doing this. If n= 10, Alice hasa 1 in 1024 chance of deceiving
Bab.

Alice could also send Bob random bitsin step (8). Perhaps Bob won’t know that sheis sending him
random bits until he receives the whole key and tries to decrypt the message halves. But again, Bob
has probability on his side. He has aready received half of the keys, and Alice does not know which
half. If nislarge enough, Aliceis sureto send him anonsense bit to a key he has already received
and he will know immediately that she istrying to deceive him.

Maybe Alice will just go along with step (8) until she has enough bits of the keys to mount a brute-
force attack and then stop transmitting bits. DES has a 56-bit-long key. If she receives 40 of the 56

bits, she only hasto try 216 or 65,536, keysin order to read the message—atask certainly within the
realm of a computer’s capabilities. But Bob will have exactly the same number of bits of her keys
(or, at worst, one bit less), so he can do the same thing. Alice has no real choice but to continue the
protocol.

The basic point isthat Alice hasto play fairly, because the odds of fooling Bob are just too small. At
the end of the protocol, both parties have n signed message pairs, any one of which is sufficient for a
valid signature.

There is one way Alice can cheat; she can send Bob identical messagesin Step (5). Bob can't detect
this until after the protocol is finished, but he can use a transcript of the protocol to convince ajudge
of Alice’' sduplicity.

There are two weaknesses with protocols of thistype [138]. First, it’s aproblem if one of the parties
has significantly more computing power than the other. If, for example, Alice can mount a brute-
force attack faster than Bob can, then she can stop sending bits early in step (8), and figure out Bob's
keys herself. Bob, who cannot do the same in a reasonable amount of time, will not be happy.

Second, it’s a problem if one of the parties stops the protocol early. If Alice abruptly stops the
protocol, both face similar computational efforts, but Bob does not have any real legal recourse. If,
for example, the contract specifies that she do something in aweek, and Alice terminates the

protocol at a point when Bob would have to spend ayear’ s worth of computing power before sheis
really committed, that’s a problem. Thereal difficulty here isthe lack of a near-term deadline by
which the process cleanly terminates with either both or neither party bound.

These problems also apply to the protocolsin Sections 5.8 and 5.9.
5.8 Digital Certified Mail

The same simultaneous oblivious transfer protocol used for contract signing works, with some
modifications, for computer certified mail [529]. Suppose Alice wants to send a message to Bob, but
she does not want him to read it without signing areceipt. Surly postal workers handle this process
in redl life, but the same thing can be done with cryptography. Whitfield Diffie first discussed this
problem in [490].

At first glance, the simultaneous contract-signing protocol can do this. Alice ssmply encrypts her
message with a DES key. Her half of the protocol can be something like: “Thisisthe left half of the
DES key: 32f5,” and Bob’s half can be something like: “Thisisthe left half of my receipt.”
Everything else stays the same.

To see why thiswon’t work, remember that the protocol hinges on the fact that the oblivious transfer
in step (5) keeps both parties honest. Both of them know that they sent the other party avalid half,
but neither knows which. They don’t cheat in step (8) because the odds of getting away with it are
miniscule. If Aliceis sending Bob not a message but half of a DES key, Bob can’t check the validity
of the DES key in step (6). Alice can still check the validity of Bob’s receipt, so Bob is still forced to
be honest. Alice can freely send Bob some garbage DES key, and he won't know the difference until
she has avalid receipt. Tough luck, Bob.

Getting around this problem requires some adjustment of the protocol:

(1) Aliceencrypts her message using arandom DES key, and sends the message to Bob.

(2) Alice generatesn pairs of DES keys. Thefirst key of each pair is generated at random; the
second key of each pair isthe XOR of thefirst key and the message encryption key.

(3) Aliceencrypts adummy message with each of her 2n keys.

(4) Alice sendsthe whole pile of encrypted messages to Bob, making sure he knows which
messages are which halves of which pairs.

(5) Bob generates n pairs of random DES keys.

(6) Bob generates a pair of messages that indicates avalid receipt. “ Thisisthe left half of my
receipt” and “thisistheright half of my receipt” are good candidates, with the addition of
some kind of random-bit string. He makes n receipt pairs, each numbered. Aswith the
previous protocol, the receipt is considered valid if Alice can produce both halves of areceipt
(with the same number) and all of her encryption keys.

(7) Bob encrypts each of his message pairs with DES key pairs, the ith message pair with the
ith key pair, the left message with the left key in the pair, and the right message with the right
key in the pair.

(8) Bob sends his pile of message pairsto Alice, making sure that Alice knows which
messages are which halves of which pairs.

(9) Alice and Bob send each other every key pair using the oblivious transfer protocol. That
is, Alice sends Bob either the key used to encrypt the left message or the key used to encrypt
the right message, for each of the n pairs. Bob does the same. They can either alternate sending
halves or one can send n and then the other—it doesn’t matter. Now both Alice and Bob have
one key in each key pair, but neither knows which halves the other has.

(10) Both Alice and Bob decrypt the halves they can and make sure that the decrypted
messages are valid.

(11) Alice and Bob send each other the first bits of al 2n DES keys. (If they are worried about

Eve being able to read these mail messages, then they should encrypt their transmissions to
each other.)

(12) Alice and Bob repeat step (11) for the second bits of all 2n DES keys, the third bits, and
so on, until al the bits of al the DES keys have been transferred.

(13) Alice and Bob decrypt the remaining halves of the message pairs. Alice hasavalid
receipt from Bob, and Bob can XOR any key pair to get the original message encryption key.
(14) Alice and Bob exchange the private keys used during the oblivious transfer protocol and
each verifies that the other did not cheat.

Steps (5) through (8) for Bob, and steps (9) through (12) for both Alice and Baob, are the same as the
contract-signing protocol. The twist isall of Alice'sdummy messages. They give Bob some way of
checking the validity of her ablivious transfer in step (10), which forces her to stay honest during
steps (11) through (13). And, as with the simultaneous contract-signing protocol, both aleft and a
right half of one of Alice’s message pairs are required to compl ete the protocol.

5.9 Simultaneous Exchange of Secrets

Alice knows secret A; Bob knows secret B. Aliceiswilling to tell Bob A, if Bob tellsher B. Bob is
willing to tell Alice B, if Alicetellshim A. This protocol, observed in a schoolyard, does not work:

(1) Alice: “I'll tell if you tell mefirst.”
(2) Bob: “I'll tell if you tell me first.”
(3) Alice: “No, you first.”

(4) Bob: “Oh, dl right.” Bob whispers.
(5) Alice: “Hal | won't tell you.”

(6) Bob: “That’s not fair.”

Cryptography can make it fair. The previous two protocols are implementations of this more general
protocol, one that lets Alice and Bob exchange secrets simultaneously [529]. Rather than repeat the
whole protocoal, I'll sketch the modifications to the certified mail protocol.

Alice performs steps (1) through (4) using A as the message. Bob goes through similar steps using B
as his message. Alice and Bob perform the oblivious transfer in step (9), decrypt the halves they can
in step (10), and go through the iterations in steps (11) and (12). If they are concerned about Eve,
they should encrypt their messages. Finally, both Alice and Bob decrypt the remaining halves of the
message pairs and XOR any key pair to get the original message encryption key.

This protocol allows Alice and Bob to exchange secrets simultaneously, but says nothing about the
quality of the secrets exchanged. Alice could promise Bob the solution to the Minotaur’ s labyrinth,
but actually send him a map of Boston’s subway system. Bob will get whatever secret Alice sends

him. Other protocols are [1286,195,991,1524,705,753,259,358,415].

Chapter 6
Esoteric Protocols

6.1 Secure Elections

Computerized voting will never be used for general elections unless thereis a protocol that both
maintains individual privacy and prevents cheating. The ideal protocol has, at the very least, these
SiX requirements:

Only authorized voters can vote.

No one can vote more than once.

No one can determine for whom anyone el se voted.

No one can duplicate anyone else’ s vote. (This turns out to be the hardest requirement.)
No one can change anyone else' s vote without being discovered.

Every voter can make sure that his vote has been taken into account in the final tabulation.

oSouhlwnNhE

Additionally, some voting schemes may have the following requirement:
7. Everyone knows who voted and who didn'’t.

Before describing the complicated voting protocols with these characteristics, let’slook at some
simpler protocols.

Simplistic Voting Protocol #1

(1) Each voter encrypts his vote with the public key of a Central Tabulating Facility (CTF).
(2) Each voter sends hisvoteinto the CTF.
(3) The CTF decrypts the votes, tabulates them, and makes the results public.

This protocol is rife with problems. The CTF has no idea where the votes are from, so it doesn’t even
know if the votes are coming from eligible voters. It has no ideaif eligible voters are voting more
than once. On the plus side, no one can change anyone else’ s vote; but no one would bother trying to
modify someone else’svote when it is far easier to vote repeatedly for the result of your choice.

Simplistic Voting Protocol #2

(1) Each voter signs his vote with his private key.

(2) Each voter encrypts his signed vote with the CTF s public key.

(3) Each voter sends hisvoteto aCTF.

(4) The CTF decrypts the votes, checks the signatures, tabulates the votes, and makes the
results public.

This protocol satisfies properties one and two: Only authorized voters can vote and no one can vote
more than once—the CTF would record votes received in step (3). Each vote is signed with the
voter’s private key, so the CTF knows who voted, who didn’t, and how often each voter voted. If a
vote comesin that isn’t signed by an eligible voter, or if a second vote comesin signed by avoter
who has already voted, the facility ignoresit. No one can change anyone else’ s vote either, even if
they intercept it in step (3), because of the digital signature.

The problem with this protocol is that the signature is attached to the vote; the CTF knows who
voted for whom. Encrypting the votes with the CTF' s public key prevents anyone from
eavesdropping on the protocol and figuring out who voted for whom, but you have to trust the CTF

completely. It’s analogous to having an election judge staring over your shoulder in the voting booth.

These two examples show how difficult it is to achieve the first three requirements of a secure voting
protocol, let alone the others.

Voting with Blind Signatures

We need to somehow dissociate the vote from the voter, while still maintaining authentication. The
blind signature protocol doesjust that.

(1) Each voter generates 10 sets of messages, each set containing a valid vote for each
possible outcome (e.g., if the vote is ayes or no question, each set contains two votes, one for
“yes’ and the other for “no”). Each message also contains a randomly generated identification
number, large enough to avoid duplicates with other voters.

(2) Eachvoter individually blinds all of the messages (see Section 5.3) and sends them, with
their blinding factors, to the CTF.

(3) The CTF checksits database to make sure the voter has not submitted his blinded votes for
signature previously. It opens nine of the sets to check that they are properly formed. Then it
individually signs each message in the set. It sends them back to the voter, storing the name of
the voter in its database.

(4) The voter unblinds the messages and is left with a set of votes signed by the CTF. (These
votes are signed but unencrypted, so the voter can easily see which voteis“yes’ and whichis
“no.”)

(5) The voter chooses one of the votes (ah, democracy) and encryptsit with the CTF s public
key.

(6) Thevoter sends hisvotein.

(7) The CTF decrypts the votes, checks the signatures, checks its database for a duplicate
identification number, saves the serial number, and tabulates the votes. It publishes the results
of the election, along with every serial number and its associated vote.

A malicious voter, call him Mallory, cannot cheat this system. The blind signature protocol ensures
that his votes are unique. If hetries to send in the same vote twice, the CTF will notice the duplicate
serial number in step (7) and throw out the second vote. If he tries to get multiple votes signed in
step (2), the CTF will discover thisin step (3). Malory cannot generate his own votes because he
doesn’'t know the facility’s private key. He can’t intercept and change other peopl€e’ s votes for the
same reason.

The cut-and-choose protocol in step (3) isto ensure that the votes are unique. Without that step,
Mallory could create a set of votes that are the same except for the identification number, and have
them all validated.

A malicious CTF cannot figure out how individuals voted. Because the blind signature protocol
prevents the facility from seeing the serial numbers on the votes before they are cast, the CTF cannot
link the blinded vote it signed with the vote eventually cast. Publishing alist of serial numbers and
their associated votes allows voters to confirm that their vote was tabulated correctly.

There are till problems. If step (6) is not anonymous and the CTF can record who sent in which
vote, then it can figure out who voted for whom. However, if it receives votes in alocked ballot box
and then tabulates them later, it cannot. Also, while the CTF may not be able to link votesto
individuals, it can generate alarge number of signed, valid votes and cheat by submitting those itself.
And if Alice discoversthat the CTF changed her vote, she has no way to proveit. A similar protocol,
which tries to correct these problems, is[1195, 1370].

Voting with Two Central Facilities

One solution isto divide the CTF in two. Neither party would have the power to cheat on its own.

The following protocol uses a Central Legitimization Agency (CLA) to certify voters and a separate
CTF to count votes [1373].

(1) Each voter sends a message to the CLA asking for a validation number.

(2) The CLA sendsthe voter back arandom validation number. The CLA maintainsalist of
validation numbers. The CLA aso keepsalist of the validation numbers’ recipients, in case
someone tries to vote twice.

(3) The CLA sendsthelist of validation numbersto the CTF.

(4) Each voter chooses arandom identification number. He creates a message with that
number, the validation number he received from the CLA, and his vote. He sends this message
to the CTF.

(5) The CTF checksthe validation number against the list it received from the CLA in step
(3). If the validation number isthere, the CTF crossesit off (to prevent someone from voting
twice). The CTF adds the identification number to the list of people who voted for a particul ar
candidate and adds one to the tally.

(6) After al votes have been received, the CTF publishes the outcome, as well as the lists of
identification numbers and for whom their owners voted.

Like the previous protocol, each voter can look at the lists of identification numbers and find his
own. This gives him proof that his vote was counted. Of course, all messages passing among the
parties in the protocol should be encrypted and signed to prevent someone from impersonating
someone el se or intercepting transmissions.

The CTF cannot modify votes because each voter will look for hisidentification string. If avoter
doesn’t find hisidentification string, or finds his identification string in atally other than the one he
voted for, he will immediately know there was foul play. The CTF cannot stuff the ballot box
because it is being watched by the CLA. The CLA knows how many voters have been certified and
their validation numbers, and will detect any modifications.

Mallory, who is not an eligible voter, can try to cheat by guessing avalid validation number. This
threat can be minimized by making the number of possible validation numbers much larger than the
number of actual validation numbers: 100-digit numbers for amillion voters, for example. Of course,
the validation numbers must be generated randomly.

Despite this, the CLA is till atrusted authority in some respects. It can certify ineligible voters. It
can certify eligible voters multiple times. Thisrisk could be minimized by having the CLA publish a
list of certified voters (but not their validation numbers). If the number of voterson thislist isless
than the number of votes tabulated, then something is awry. However, if more voters were certified
than votes tabulated, it probably means that some certified people didn’t bother voting. Many people
who are registered to vote don’t bother to cast ballots.

This protocol is vulnerable to collusion between the CLA and the CTF. If the two of them got
together, they could correlate databases and figure out who voted for whom.

Voting with a Single Central Facility

A more complex protocol can be used to overcome the danger of collusion between the CLA and the
CTF[1373]. This protocol isidentical to the previous one, with two modifications:

— The CLA and the CTF are one organization, and
— ANDOS (see Section 4.13) is used to anonymously distribute validation numbersin step

).

Since the anonymous key distribution protocol prevents the CTF from knowing which voter got
which validation number, there is no way for the CTF to correlate validation numbers with votes
received. The CTF still hasto be trusted not to give validation numbers to ineligible voters, though.
Y ou can also solve this problem with blind signatures.

I mproved Voting with a Single Central Facility

This protocol also uses ANDOS [1175]. It satisfies all six requirements of a good voting protocol. It
doesn’t satisfy the seventh requirement, but has two properties additional to the six listed at the
beginning of the section:

7. A voter can change hismind (i.e., retract his vote and vote again) within a given period of
time.

8. If avoter finds out that his vote is miscounted, he can identify and correct the problem
without jeopardizing the secrecy of his ballot.

Here' s the protocol:

(1) The CTF publishesalist of all legitimate voters.
(2) Within a specified deadline, each voter tells the CTF whether he intends to vote.
(3) The CTF publishes alist of voters participating in the election.
(4) Each voter receives an identification number, I, using an ANDOS protocol.
(5) Each voter generates a public-key/private-key key pair: k, d. If visthe vote, he generates
the following message and sendsiit to the CTF:
LE,(I,v)

This message must be sent anonymously.
(6) The CTF acknowledges receipt of the vote by publishing:
E. (V)
(7) Eachvoter sendsthe CTF:
l,d
(8 The CTF decryptsthe votes. At the end of the election, it publishes the results of the
election and, for each different vote, thelist of all E,(1,v) valuesthat contained that vote.

(9) If avoter observesthat hisvoteis not properly counted, he protests by sending the CTF:

LE (I,v),d
K
(10) If avoter wants to change his vote (possible, in some elections) from v to v', he sends the
CTF:
LE(1.v).d

A different voting protocol uses blind signaturesinstead of ANDOS, but is essentially the same
[585]. Steps (1) through (3) are preliminary to the actual voting. Their purposeisto find out and
publicize the total number of actual voters. Although some of them probably will not participate, it
reduces the ability of the CTF to add fraudulent votes.

In step (4), it is possible for two votersto get the same identification number. This possibility can be
minimized by having far more possible identification numbers than actual voters. If two voters

submit votes with the same identification tag, the CTF generates a new identification number, I’,
chooses one of the two votes, and publishes:

" E(1,V)

The owner of that vote recognizes it and sends in a second vote, by repeating step (5), with the new

identification number.

Step (6) gives each voter the capability to check that the CTF received his vote accurately. If hisvote
is miscounted, he can prove his case in step (9). Assuming avoter’ s vote is correct in step (6), the
message he sendsin step (9) constitutes a proof that his vote is miscounted.

One problem with the protocol is that a corrupt CTF could allocate the votes of people who respond
in step (2) but who do not actually vote. Another problem is the complexity of the ANDOS protocol.
The authors recommend dividing a large population of voters into smaller populations, such as
election districts.

Another, more serious problem is that the CTF can neglect to count a vote. This problem cannot be
resolved: Alice claimsthat the CTF intentionally neglected to count her vote, but the CTF claims
that the voter never voted.

Voting without a Central Tabulating Facility

The following protocol does away with the CTF entirely; the voters watch each other. Designed by
Michael Merritt [452, 1076, 453], it is so unwieldy that it cannot be implemented practically for
more than a handful of people, but it is useful to learn from nevertheless.

Alice, Bab, Carol, and Dave are voting yes or no (0 or 1) on a particular issue. Assume each voter
has a public and private key. Also assume that everyone knows everyone else' s public keys.

(1) Each voter chooses his vote and does the following:
(a) He attaches arandom string to his vote.
(b) Heencryptsthe result of step (a) with Dave's public key.
(c) Heencryptsthe result of step (b) with Carol’s public key.
(d) Heencryptsthe result of step (c) with Bob’s public key.
(e) He encryptsthe result of step (d) with Alice’' s public key.
(f) He attaches anew random string to the result of step (€) and encryptsit with Dave's
public key. He records the value of the random string.
(9) He attaches a new random string to the result of step (f) and encryptsit with Carol’s
public key. He records the value of the random string.
(h) He attaches a new random string to the result of step (g) and encryptsit with Bob’'s
public key. He records the value of the random string.
(i) He attaches a new random string to the result of step (h) and encryptsit with Alice's
public key. He records the value of the random string.
If E isthe encryption function, R; isarandom string, and V is the vote, his message

looks like:

Ea(Rs Eg(Ry,EC(Rg,Ep(RyEA(E g(EC(ER(V:R))))

Each voter saves the intermediate results at each point in the calculation. These results
will be used later in the protocol to confirm that his vote is among those being counted.
(2) Each voter sends his message to Alice.
(3) Alice decryptsall of the votes with her private key and then removes al of the random
strings at that level.
(4) Alice scramblesthe order of al the votes and sends the result to Bob.
Each vote now looks like this:
Eg(RyEc(Ry Ep(RyEnEg(Ec(Ep(VRY))))
(5) Bob decryptsall of the votes with his private key, checks to see that his vote is among the
set of votes, removes all the random strings at that level, scrambles all the votes, and then
sends the result to Carol.

Each vote now looks like this:

Ec(Rs.Ep (RyEA(ER(EC(ER(VIR)))))
(6) Carol decryptsall of the votes with her private key, checks to see that her vote is among
the set of votes, removes all the random strings at that level, scrambles all the votes, and then
sends the result to Dave.
Each vote now looks like this:

Ep(Ry.EA(Eg(Ec(Ep(VIR))))
(7) Davedecryptsall of the votes with his private key, checks to see that his vote is among the
set of votes, removes all the random strings at that level, scrambles all the votes, and sends
themto Alice.
Each vote now looks like this:

EA(Eg(Ec(Ep(VIR))))
(8) Alicedecryptsall the votes with her private key, checksto see that her vote is among the

set of votes, signs al the votes, and then sends the result to Bob, Carol, and Dave.
Each vote now looks like this:

SpA(Eg(Ec(Ep(VIR)))
(9) Bob verifies and deletes Alice’ s signatures. He decrypts all the votes with his private key,
checks to see that his vote is among the set of votes, signs al the votes, and then sends the
result to Alice, Carol, and Dave.
Each vote now looks like this:

SE(Ec(Ep(V.RY))
(10) Caral verifies and deletes Bob’' s signatures. She decrypts all the votes with her private
key, checks to see that her vote is among the set of votes, signs al the votes, and then sends
the result to Alice, Bob, and Dave.
Each vote now looks like this:

S(Ep(ViRY))
(11) Dave verifies and deletes Carol’ s signatures. He decrypts all the votes with his private
key, checks to see that his vote is among the set of votes, signs al the votes, and then sends the
result to Alice, Bob, and Carol.
Each vote now looks like this:

$HV.R)
(12) All verify and delete Dave's signature. They check to make sure that their vote is among

the set of votes (by looking for their random string among the votes).
(13) Everyone removes the random strings from each vote and tallies the votes.

Not only does this protocol work, it is also self-adjudicating. Alice, Bob, Carol, and Dave will
immediately know if someone triesto cheat. No CTF or CLA isrequired. To see how thisworks,
let’ stry to cheat.

If someone tries to stuff the ballot, Alice will detect the attempt in step (3) when she receives more
votes than people. If Alice tries to stuff the ballot, Bob will notice in step (4).

More devious s to substitute one vote for another. Since the votes are encrypted with various public
keys, anyone can create as many valid votes as needed. The decryption protocol has two rounds:
round one consists of steps (3) through (7), and round two consists of steps (8) through (11). Vote
substitution is detected differently in the different rounds.

If someone substitutes one vote for another in round two, his actions are discovered immediately. At
every step the votes are signed and sent to all the voters. If one (or more) of the voters noticed that
hisvoteis no longer in the set of votes, he immediately stops the protocol. Because the votes are
signed at every step, and because everyone can backtrack through the second round of the protocol,
it is easy to detect who substituted the votes.

Substituting one vote for another during round one of the protocol is more subtle. Alicecan’'t doit in
step (3), because Bob, Carol, or Dave will detect it in step (5), (6), or (7). Bob could try in step (5). If
he replaces Carol’s or Dave' s vote (remember, he doesn’t know which vote corresponds to which
voter), Carol or Dave will noticein step (6) or (7). They wouldn’t know who tampered with their
vote (although it would have had to be someone who had already handled the votes), but they would
know that their vote was tampered with. If Bob islucky and picks Alice’ s vote to replace, she won't
notice until the second round. Then, she will notice her vote missing in step (8). Still, she would not
know who tampered with her vote. In the first round, the votes are shuffled from one step to the
other and unsigned; it isimpossible for anyone to backtrack through the protocol to determine who
tampered with the votes.

Another form of cheating isto try to figure out who voted for whom. Because of the scrambling in
thefirst round, it isimpossible for someone to backtrack through the protocol and link votes with
voters. The removal of the random strings during the first round is also crucial to preserving
anonymity. If they are not removed, the scrambling of the votes could be reversed by re-encrypting
the emerging votes with the scrambler’ s public key. Asthe protocol stands, the confidentiality of the
votesis secure.

Even more strongly, because of theinitial random string, R;, even identical votes are encrypted
differently at every step of the protocol. No one knows the outcome of the vote until step (11).

What are the problems with this protocol ? First, the protocol has an enormous amount of
computation. The example described had only four voters and it was complicated. This would never
work in areal election, with tens of thousands of voters. Second, Dave |learns the results of the
election before anyone else does. While he still can't affect the outcome, this gives him some power
that the others do not have. On the other hand, thisis also true with centralized voting schemes.

The third problem isthat Alice can copy anyone else’ s vote, even though she does not know what it
is beforehand. To see why this could be a problem, consider a three-person election between Alice,
Bob, and Eve. Eve doesn't care about the result of the election, but she wants to know how Alice
voted. So she copies Alice’ s vote, and the result of the election is guaranteed to be equal to Alice’s
vote.

Other Voting Schemes

Many complex secure election protocols have been proposed. They come in two basic flavors. There
are mixing protocols, like “Voting without a Central Tabulating Facility, ” where everyone' s vote
gets mixed up so that no one can associate a vote with avoter.

There are a so divided protocols, where individual votes are divided up among different tabulating
facilities such that no single one of them can cheat the voters [360, 359, 118, 115]. These protocols
only protect the privacy of votersto the extent that different “parts’ of the government (or whoever
is administering the voting) do not conspire against the voter. (Thisidea of breaking a central
authority into different parts, who are only trusted when together, comes from [316].)

One divided protocol is[1371]. The basic ideais that each voter breaks his vote into several shares.
For example, if the vote were “yes’ or “no, ” a1 could indicate “yes’ and a0 could indicate “no”;
the voter would then generate several numbers whose sum was either O or 1. These shares are sent to
tabulating facilities, one to each, and are also encrypted and posted. Each center tallies the shares it
receives (there are protocols to verify that thetally is correct) and the final vote is the sum of all the
tallies. There are also protocols to ensure that each voter’s shares add up to O or 1.

Another protocol, by David Chaum [322], ensures that voters who attempt to disrupt the election can
be traced. However, the election must then be restarted without the interfering voter; this approach is

not practical for large-scale elections.

Another, more complex, voting protocol that solves some of these problems can be found in [770,
771]. Thereis even avoting protocol that uses multiple-key ciphers[219]. Y et another voting
protocol, which claims to be practical for large-scale elections, isin [585]. And [347] alows voters
to abstain.

Voting protocols work, but they make it easier to buy and sell votes. The incentives become
considerably stronger as the buyer can be sure that the seller votes as promised. Some protocols are
designed to be receipt-free, so that it isimpossible for avoter to prove to someone else that he voted
in acertain way [117, 1170, 1372)].

6.2 Secure Multiparty Computation

Secure multiparty computation is a protocol in which agroup of people can get together and
compute any function of many variablesin a special way. Each participant in the group provides one
or more variables. The result of the function is known to everyone in the group, but no one learns
anything about the inputs of any other members other than what is obvious from the output of the
function. Here are some examples:

Protocol #1

How can a group of people calculate their average salary without anyone learning the salary of
anyone else?

(1) Alice adds a secret random number to her salary, encrypts the result with Bob’s public
key, and sendsit to Bab.

(2) Bob decrypts Alice sresult with his private key. He adds his salary to what he received
from Alice, encrypts the result with Carol’ s public key, and sendsit to Carol.

(3) Carol decrypts Bob'sresult with her private key. She adds her salary to what she received
from Baob, encrypts the result with Dave' s public key, and sendsiit to Dave.

(4) Dave decrypts Carol’s result with his private key. He adds his salary to what he received
from Carol, encrypts the result with Alice's public key, and sends it to Alice.

(5) Alice decrypts Dave' sresult with her private key. She subtracts the random number from
step (1) to recover the sum of everyone' s salaries.

(6) Alice dividesthe result by the number of people (four, in this case) and announces the
result.

This protocol assumes that everyone is honest; they may be curious, but they follow the protocol. If
any participant lies about his salary, the average will be wrong. A more serious problem isthat Alice
can misrepresent the result to everyone. She can subtract any number she likesin step (5), and no
one would be the wiser. Alice could be prevented from doing this by requiring her to commit to her
random number using any of the bit-commitment schemes from Section 4.9, but when she revealed
her random number at the end of the protocol Bob could learn her salary.

Protocol #2

Alice and Bob are at arestaurant together, having an argument over who is older. They don't,
however, want to tell the other their age. They could each whisper their age into the ear of atrusted
neutral party (the waiter, for example), who could compare the numbersin his head and announce
the result to both Alice and Bob.

The above protocol has two problems. One, your average waiter doesn’t have the computational

ability to handle situations more complex than determining which of two numbersis greater. And
two, if Alice and Bob were really concerned about the secrecy of their information, they would be
forced to drown the waiter in abow! of vichyssoise, lest he tell the wine steward.

Public-key cryptography offers afar less violent solution. Thereis a protocol by which Alice, who
knows a value a, and Bob, who knows avalue b, can together determine if a < b, so that Alice gets
no additional information about b and Bob gets no additional information about a. And, both Alice
and Bob are convinced of the validity of the computation. Since the cryptographic algorithm used is
an essential part of the protocol, details can be found in Section 23.14.

Of course, this protocol doesn’t protect against active cheaters. There' s nothing to stop Alice (or
Bab, for that matter) from lying about her age. If Bob were a computer program that blindly
executed the protocol, Alice could learn his age (is the age of a computer program the length of time
since it was written or the length of time since it started running?) by repeatedly executing the
protocol. Alice might give her age as 60. After learning that she is older, she could execute the
protocol again with her age as 30. After learning that Bob is older, she could execute the protocol
again with her age as 45, and so on, until Alice discovers Bob's age to any degree of accuracy she
wishes.

Assuming that the participants don’'t actively cheat, it is easy to extend this protocol to multiple
participants. Any number of people can find out the order of their ages by a sequence of honest
applications of the protocol; and no participant can learn the age of another.

Protocol #3

Alice likes to do kinky things with teddy bears. Bob has erotic fantasies about marble tables. Both
are pretty embarrassed by their particular fetish, but would love to find a mate who shared in
their...um.. lifestyle.

Here at the Secure Multiparty Computation Dating Service, we' ve designed a protocol for people
like them. We' ve numbered an astonishing list of fetishes, from “aardvarks’ to “zoot suits.”
Discreetly separated by a modem link, Alice and Bob can participate in a secure multiparty protocol.
Together, they can determine whether they share the same fetish. If they do, they might look forward
to alifetime of blisstogether. If they don't, they can part company secure in the knowledge that their
particular fetish remains confidential. No one, not even the Secure Multiparty Computation Dating
Service, will ever know.

Here' s how it works:

(1) Using aone-way function, Alice hashes her fetish into a seven-digit string.

(2) Alice usesthe seven-digit string as atelephone number, calls the number, and leaves a
message for Bob. If no one answers or the number is not in service, Alice applies a one-way
function to the telephone number until she finds someone who can play along with the
protocol.

(3) Alicetells Bob how many times she had to apply the one-way hash function to her fetish.
(4) Bob hashes his fetish the same number of times that Alice did. He also uses the seven-
digit string as a telephone number, and asks the person at the other end whether there were any
messages for him.

Note that Bob has a chosen-plaintext attack. He can hash common fetishes and call the resulting
telephone numbers, looking for messages for him. This protocol only really worksif there are
enough possible plaintext messages for thisto be impractical.

There' s also amathematical protocol, one similar to Protocol #2. Alice knows a, Bob knows b, and

together they will determine whether a = b, such that Bob does not learn anything additional about a
and Alice does not learn anything additional about b. Details are in Section 23.14.

Protocol #4

Thisis another problem for secure multiparty computation [1373]: A council of seven meets
regularly to cast secret ballots on certain issues. (All right, they rule the world—don’t tell anyone |
told you.) All council members can vote yes or no. In addition, two parties have the option of casting
“super votes’: S'yes and S-no. They do not have to cast super votes; they can cast regular votes if
they prefer. If no one casts any super votes, then the majority of votes decides the issue. In the case
of asingle or two equivalent super votes, all regular votes are ignored. In the case of two
contradicting super votes, the majority of regular votes decides. We want a protocol that securely
performs this style of voting.

Two examples should illustrate the voting process. Assume there are five regular voters, N, through
N and two super voters: S; and S,,. Here’sthe vote on issue #1:

Sy S, Ny N, N N, Ng
S-yes no no no no yes yes

In this instance the only vote that mattersis S, 's, and the result is “yes.”

Hereis the vote on issue #2:

Sy S, N N Ny Ny N

S-yes S-no no no no yes yes
Here the two super votes cancel and the majority of regular “no” votes decide the issue.

If it isn’t important to hide the knowledge of whether the super vote or the regular vote was the
deciding vote, thisis an easy application of a secure voting protocol. Hiding that knowledge requires
amore complicated secure multiparty computation protocol.

Thiskind of voting could occur in real life. It could be part of a corporation’s organizational
structure, where certain people have more power than others, or it could be part of the United
Nations's procedures, where certain nations have more power than others.

Multiparty Unconditionally Secure Protocols

Thisisjust asimple case of ageneral theorem: Any function of n inputs can be computed by a set of
n playersin away that will let all learn the value of the function, but any set of less than n/2 players
will not get any additional information that does not follow from their own inputs and the value of
the output information. For details, see [136, 334, 1288, 621].

Secure Circuit Evaluation

Alice has her input, a. Bob has hisinput, b. Together they wish to compute some general function, f
(a,b), such that Alice learns nothing about Bob’ s input and Bob learns nothing about Alice’ sinput.
The general problem of secure multiparty computation is also called secure cir cuit evaluation.
Here, Alice and Bob can create an arbitrary Boolean circuit. This circuit accepts inputs from Alice
and from Bob and produces an output. Secure circuit evaluation is a protocol that accomplishes three
things:

1. Alice can enter her input without Bob’s being able to learn it.

2. Bob can enter hisinput without Alice’ s being ableto learn it.

3. Both Alice and Bob can calculate the output, with both parties being sure the output is
correct and that neither party has tampered with it.

Details on secure circuit evaluation can be found in [831].
6.3 Anonymous M essage Broadcast

Y ou can't go out to dinner with abunch of cryptographers without raising aruckus. In [321], David
Chaum introduced the Dining Cryptographers Problem:

Three cryptographers are sitting down to dinner at their favorite three-star restaurant.
Their waiter informs them that arrangements have been made with the maitre d* hétel for
the bill to be paid anonymously. One of the cryptographers might be paying for the
dinner, or it might have been the NSA. The three cryptographers respect each other’s
right to make an anonymous payment, but they wonder if the NSA is paying.

How do the cryptographers, named Alice, Bob, and Carol, determine if one of them is paying for
dinner, while at the same time preserving the anonymity of the payer?

Chaum goes on to solve the problem:

Each cryptographer flips an unbiased coin behind his menu, between him and the
cryptographer to his right, so that only the two of them can see the outcome. Each
cryptographer then states aloud whether the two coins he can see—the one he flipped
and the one his left-hand neighbor flipped—fell on the same side or on different sides. If
one of the cryptographersis the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer is paying; an
even number of differencesindicates that NSA is paying (assuming that the dinner was
paid for only once). Yet, if a cryptographer is paying, neither of the other two learns
anything from the utterances about which cryptographer it is.

To see that this works, imagine Alice trying to figure out which other cryptographer paid for dinner
(assuming that neither she nor the NSA paid). If she sees two different coins, then either both of the
other cryptographers, Bob and Carol, said, “same” or both said, “different.” (Remember, an odd
number of cryptographers saying “different” indicates that one of them paid.) If both said, “ different,
" then the payer is the cryptographer closest to the coin that is the same as the hidden coin (the one
that Bob and Carol flipped). If both said, “same, ” then the payer is the cryptographer closest to the
coin that is different from the hidden coin. However, if Alice seestwo coinsthat are the same, then
either Bob said, “same” and Carol said, “different, ” or Bob said, “different” and Carol said, “same.”
If the hidden coin is the same as the two coins she sees, then the cryptographer who said, “ different”
isthe payer. If the hidden coin is different from the two coins she sees, then the cryptographer who
said, “same” isthe payer. In all of these cases, Alice needs to know the result of the coin flipped
between Bob and Carol to determine which of them paid.

This protocol can be generalized to any number of cryptographers; they al sit in aring and flip coins
among them. Even two cryptographers can perform the protocol. Of course, they know who paid, but
someone watching the protocol could tell only if one of the two paid or if the NSA paid; they could
not tell which cryptographer paid.

The applications of this protocol go far beyond sitting around the dinner table. Thisis an example of
unconditional sender and recipient untraceability. A group of users on a network can use this
protocol to send anonymous messages.

(1) Theusersarrange themselvesinto acircle.

(2) Atregular intervals, adjacent pairs of users flip coins between them, using some fair coin
flip protocol secure from eavesdroppers.

(3) After every flip, each user announces either “same” or “different.”

If Alice wishes to broadcast a message, she simply starts inverting her statement in those rounds
corresponding to a 1 in the binary representation of her message. For example, if her message were
“1001, " she would invert her statement, tell the truth, tell the truth, and then invert her statement.
Assuming the result of her flips were “different, ” “same, ” “same, ” “same, ” she would say “same,
" “same, ” “same, " “different.”

” o N

If Alice notices that the overall outcome of the protocol doesn’t match the message sheistrying to
send, she knows that someone else is trying to send a message at the same time. She then stops
sending the message and waits some random number of rounds before trying again. The exact
parameters have to be worked out based on the amount of message traffic on this network, but the
idea should be clear.

To make things even more interesting, these messages can be encrypted in another user’s public
keys. Then, when everyone receives the message (areal implementation of this should add some
kind of standard message-beginning and message-ending strings), only the intended recipient can
decrypt and read it. No one else knows who sent it. No one else knows who could read it. Traffic
analysis, which traces and compiles patterns of people’ s communications even though the messages
themselves may be encrypted, is useless.

An alternative to flipping coins between adjacent parties would be for them to keep a common file of
random bits. Maybe they could keep them on a CD-ROM, or one member of the pair could generate
apile of them and send them to the other party (encrypted, of course). Alternatively, they could
agree on a cryptographically secure pseudo-random-number generator between them, and they could
each generate the same string of pseudo-random bits for the protocol.

One problem with this protocol is that while a malicious participant cannot read any messages, he
can disrupt the system unobserved by lying in step (3). Thereis amodification to the previous
protocol that detects disruption [1578, 1242]; the problem is called “ The Dining Cryptographersin
the Disco.”

6.4 Digital Cash

Cash isaproblem. It’s annoying to carry, it spreads germs, and people can steal it from you. Checks
and credit cards have reduced the amount of physical cash flowing through society, but the complete
elimination of cash isvirtually impossible. It’ll never happen; drug dealers and politicians would
never stand for it. Checks and credit cards have an audit trail; you can’t hide to whom you gave
money.

On the other hand, checks and credit cards allow people to invade your privacy to a degree never
before imagined. Y ou might never stand for the police following you your entire life, but the police
can watch your financial transactions. They can see where you buy your gas, where you buy your
food, who you call on the telephone—all without leaving their computer terminals. People need a
way to protect their anonymity in order to protect their privacy.

Happily, there is a complicated protocol that allows for authenticated but untraceable messages.
Lobbyist Alice can transfer digital cash to Congresscritter Bob so that newspaper reporter Eve does
not know Alice sidentity. Bob can then deposit that electronic money into his bank account, even
though the bank has no ideawho Aliceis. But if Alicetriesto buy cocaine with the same piece of
digital cash she used to bribe Bob, she will be detected by the bank. And if Bob tries to deposit the

same piece of digital cash into two different accounts, he will be detected—~but Alice will remain
anonymous. Sometimes thisis called anonymous digital cash to differentiate it from digital money
with an audit trail, such as credit cards.

A great socia need exists for this kind of thing. With the growing use of the Internet for commercial
transactions, there is more call for network-based privacy and anonymity in business. (There are
good reasons people are reluctant to send their credit card numbers over the Internet.) On the other
hand, banks and governments seem unwilling to give up the control that the current banking
system’ s audit trail provides. They’ Il have to, though. All it will take for digital cash to catch onis
for some trustworthy institution to be willing to convert the digits to real money.

Digital cash protocols are very complex. We'll build up to one, a step at atime. For more formal
details, read [318, 339, 325, 335, 340]. Readlize that thisisjust one digital cash protocol; there are
others.

Protocol #1

The first few protocols are physical analogies of cryptographic protocols. Thisfirst protocol isa
simplified physical protocol for anonymous money orders:

(1) Alice prepares 100 anonymous money orders for $1000 each.

(2) Alice puts one each, and a piece of carbon paper, into 100 different envelopes. She gives
them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for $1000.

(4) The bank signs the one remaining unopened envelope. The signature goes through the
carbon paper to the money order. The bank hands the unopened envelope back to Alice, and
deducts $1000 from her account.

(5) Alice opensthe envelope and spends the money order with a merchant.

(6) The merchant checks for the bank’ s signature to make sure the money order islegitimate.
(7) The merchant takes the money order to the bank.

(8) The bank verifiesits signature and credits $1000 to the merchant’ s account.

This protocol works. The bank never sees the money order it signed, so when the merchant bringsit
to the bank, the bank has no ideathat it was Alice's. The bank is convinced that it is valid, though,
because of the signature. The bank is confident that the unopened money order is for $1000 (and not
for $100, 000 or $100, 000, 000) because of the cut-and-choose protocol (see Section 5.1). It verifies
the other 99 envelopes, so Alice has only a 1 percent chance of cheating the bank. Of course, the
bank will make the penalty for cheating great enough so that it isn’t worth that chance. If the bank
refusesto sign the last check (if Aliceis caught cheating) without penalizing Alice, she will continue
to try until she gets lucky. Prison terms are a better deterrent.

Protocol #2

The previous protocol prevents Alice from writing amoney order for more than she claimsto, but it
doesn’t prevent Alice from photocopying the money order and spending it twice. Thisis called the
double spending problem; to solveit, we need a complication:

(1) Alice prepares 100 anonymous money orders for $1000 each. On each money order she
includes a different random uniqueness string, one long enough to make the chance of another
person also using it negligible.

(2) Alice puts one each, and a piece of carbon paper, into 100 different envelopes. She gives
them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for $1000.

(4) The bank signs the one remaining unopened envelope. The signature goes through the

carbon paper to the money order. The bank hands the unopened envel ope back to Alice and
deducts $1000 from her account.

(5) Alice opensthe envelope and spends the money order with a merchant.

(6) The merchant checks for the bank’s signature to make sure the money order islegitimate.
(7) The merchant takes the money order to the bank.

(8) The bank verifiesits signature and checks its database to make sure a money order with
the same uniqueness string has not been previously deposited. If it hasn't, the bank credits
$1000 to the merchant’ s account. The bank records the uniqueness string in a database.

(9) If it has been previously deposited, the bank doesn’t accept the money order.

Now, if Alicetriesto spend a photocopy of the money order, or if the merchant tries to deposit a
photocopy of the money order, the bank will know about it.

Protocol #3

The previous protocol protects the bank from cheaters, but it doesn’t identify them. The bank doesn’t
know if the person who bought the money order (the bank has no ideaiit’s Alice) tried to cheat the
merchant or if the merchant tried to cheat the bank. This protocol corrects that:

(1) Alice prepares 100 anonymous money orders for $1000 each. On each of the money
orders she includes a different random uniqueness string, one long enough to make the chance
of another person also using it negligible.

(2) Alice puts one each, and a piece of carbon paper, into 100 different envelopes. She gives
them all to the bank.

(3) The bank opens 99 envelopes and confirms that each is a money order for $1000 and that
all the random strings are different.

(4) The bank signs the one remaining unopened envelope. The signature goes through the
carbon paper to the money order. The bank hands the unopened envel ope back to Alice and
deducts $1000 from her account.

(5) Alice opensthe envelope and spends the money order with a merchant.

(6) The merchant checks for the bank’ s signature to make sure the money order islegitimate.
(7) The merchant asks Alice to write arandom identity string on the money order.

(8) Alicecomplies.

(9) The merchant takes the money order to the bank.

(10) The bank verifies the signature and checks its database to make sure a money order with
the same uniqueness string has not been previously deposited. If it hasn’t, the bank credits
$1000 to the merchant’ s account. The bank records the uniqueness string and the identity
string in a database.

(11) If the uniqueness string isin the database, the bank refuses to accept the money order.
Then, it compares the identity string on the money order with the one stored in the database. If
it is the same, the bank knows that the merchant photocopied the money order. If it is different,
the bank knows that the person who bought the money order photocopied it.

This protocol assumes that the merchant cannot change the identity string once Alice writesit on the
money order. The money order might have a series of little squares, which the merchant would
require Aliceto fill in with either Xs or Os. The money order might be made out of paper that tears if
erased.

Since the interaction between the merchant and the bank takes place after Alice spends the money,
the merchant could be stuck with abad money order. Practical implementations of this protocol
might require Alice to wait near the cash register during the merchant-bank interaction, much the
same way as credit-card purchases are handled today.

Alice could also frame the merchant. She could spend a copy of the money order a second time,

giving the same identity string in step (7). Unless the merchant keeps a database of money orders it
aready received, he would be fooled. The next protocol eliminates that problem.

Protocol #4

If it turns out that the person who bought the money order tried to cheat the merchant, the bank
would want to know who that person was. To do that requires moving away from a physical analogy
and into the world of cryptography.

The technique of secret splitting can be used to hide Alice’s name in the digital money order.

(1) Alice prepares n anonymous money orders for a given amount.

Each of the money orders contains a different random uniqueness string, X, one long enough
to make the chance of two being identical negligible.

On each money order, there are also n pairs of identity bit strings, 14, I,,..., | . (Yes, that’sn

different pairs on each check.) Each of these pairsis generated as follows:. Alice creates a
string that gives her name, address, and any other piece of identifying information that the
bank wants to see. Then, she splitsit into two pieces using the secret splitting protocol (see
Section 3.6). Then, she commits to each piece using a bit-commitment protocol.

For example, |5, consists of two parts: |, and |, . Each part is a bit-committed packet that

Alice can be asked to open and whose proper opening can be instantly verified. Any pair (e.g.,

|, andl_p, butnotl, andl, o), reveals Alice'sidentity.

Each of the money orderslooks like this:

Amount
Uni queness String: X
Identity Strings: [, = (I,

I (120 12R)

In = (InL’ lnR)

(2) Aliceblindsall n money orders, using a blind signature protocol. She gives them al to the
bank.

(3) The bank asks Aliceto unblind n - 1 of the money orders at random and confirms that they
are all well formed. The bank checks the amount, the uniqueness string, and asks Alice to
revea all of theidentity strings.

(4) If the bank is satisfied that Alice did not make any attempts to cheat, it signs the one
remaining blinded money order. The bank hands the blinded money order back to Alice and
deducts the amount from her account.

(5) Alice unblinds the money order and spends it with a merchant.

(6) The merchant verifies the bank’s signature to make sure the money order islegitimate.

(7) The merchant asks Alice to randomly reveal either the left half or the right half of each
identity string on the money order. In effect, the merchant gives Alice arandom n- bit selector

string, by, b,,..., b,,. Alice opens either the left or right half of |;, depending on whether b, isa

Ooral.

(8) Alicecomplies.

(9) The merchant takes the money order to the bank.

(10) The bank verifies the signature and checks its database to make sure a money order with
the same uniqueness string has not been previously deposited. If it hasn't, the bank credits the
amount to the merchant’ s account. The bank records the uniqueness string and all of the
identity information in a database.

(11) If the uniqueness string isin the database, the bank refuses to accept the money order.
Then, it compares the identity string on the money order with the one stored in the database. If

it is the same, the bank knows that the merchant copied the money order. If it is different, the
bank knows that the person who bought the money order photocopied it. Since the second
merchant who accepted the money order handed Alice a different selector string than did the
first merchant, the bank finds a bit position where one merchant had Alice open the | eft half
and the other merchant had Alice open the right half. The bank X ORs the two halves together
to revea Alice sidentity.

Thisis quite an amazing protocol, so let’slook at it from various angles.

Can Alice cheat? Her digital money order is nothing more than a string of bits, so she can copy it.
Spending it the first time won't be a problem; she’ll just complete the protocol and everything will
go smoothly. The merchant will give her arandom n-bit selector string in step (7) and Alice will
open either the left half or right half of each |, in step (8). In step (10), the bank will record al of this

data, aswell as the money order’s uniqueness string.

When she tries to use the same digital money order a second time, the merchant (either the same
merchant or a different merchant) will give her adifferent random selector string in step (7). Alice
must comply in step (8); not doing so will immediately alert the merchant that something is
suspicious. Now, when the merchant brings the money order to the bank in step (10), the bank would
immediately notice that a money order with the same uniqueness string was already deposited. The
bank then compares the opened halves of the identity strings. The odds that the two random selector

strings arethe sameis 1in 2"; it isn't likely to happen before the next ice age. Now, the bank finds a
pair with one half opened the first time and the other half opened the second time. It XORs the two
halves together, and out pops Alice's name. The bank knows who tried to spend the money order
twice.

Note that this protocol doesn’t keep Alice from trying to cheat; it detects her cheating with almost
certainty. Alice can’'t prevent her identity from being revealed if she cheats. She can’t change either
the uniqueness string or any of the identity strings, because then the bank’ s signature will no longer
be valid. The merchant will immediately notice that in step (6).

Alice could try to sneak a bad money order past the bank, one on which the identity strings don’t
reveal her name; or better yet, one whose identity strings reveal someone else’s name. The odds of
her getting this ruse past the bank in step (3) are 1 in n . These aren’t impossible odds, but if you
make the penalty severe enough, Alice won't try it. Or, you could increase the number of redundant
money orders that Alice makesin step (1).

Can the merchant cheat? His chances are even worse. He can’t deposit the money order twice; the
bank will notice the repeated use of the selector string. He can’t fake blaming Alice; only she can
open any of the identity strings.

Even collusion between Alice and the merchant can’t cheat the bank. Aslong as the bank signs the
money order with the uniqueness string, the bank is assured of only having to make good on the
money order once.

What about the bank? Can it figure out that the money order it accepted from the merchant was the
oneit signed for Alice? Aliceis protected by the blind signature protocol in steps (2) through (5).
The bank cannot make the connection, even if it keeps complete records of every transaction. Even
more strongly, there is no way for the bank and the merchant to get together to figure out who Alice
is. Alice can walk in the store and, completely anonymously, make her purchase.

Eve can cheat. If she can eavesdrop on the communication between Alice and the merchant, and if
she can get to the bank before the merchant does, she can deposit the digital cash first. The bank will
accept it and, even worse, when the merchant tries to deposit the cash he will be identified as a

cheater. If Eve steals and spends Alice' s cash before Alice can, then Alice will be identified asa
cheater. There’s no way to prevent this; it isadirect result of the anonynimity of the cash. Both
Alice and the merchant have to protect their bits as they would paper money.

This protocol lies somewhere between an arbitrated protocol and a self-enforcing protocol. Both
Alice and the merchant trust the bank to make good on the money orders, but Alice does not have to
trust the bank with knowledge of her purchases.

Digital Cash and the Perfect Crime

Digital cash hasits dark side, too. Sometimes people don’t want so much privacy. Watch Alice
commit the perfect crime [1575]:

(1) Alicekidnaps a baby.
(2) Alice prepares 10, 000 anonymous money orders for $1000 (or as many as she wants for
whatever denomination she wants).
(3) Aliceblindsall 10, 000 money orders, using a blind signature protocol. She sends them to
the authorities with the threat to kill the baby unless the following instructions are met:

(a) Have abank sign all 10, 000 money orders.

(b) Publish the resultsin a newspaper.
(4) The authorities comply.
(5) Alice buys anewspaper, unblinds the money orders, and starts spending them. Thereis no
way for the authorities to trace the money orders to her.
(6) Alicefreesthe baby.

Note that this situation is much worse than any involving physical tokens—cash, for example.
Without physical contact, the police have less opportunity to apprehend the kidnapper.

In general, though, digital cash isn’t agood deal for criminals. The problem is that the anonymity
only works one way: The spender is anonymous, but the merchant is not. Moreover, the merchant
cannot hide the fact that he received money. Digital cash will make it easy for the government to
determine how much money you made, but impossible to determine what you spent it on.

Practical Digital Cash

A Dutch company, DigiCash, owns most of the digital cash patents and has implemented digital cash
protocols in working products. Anyone interested should contact DigiCash BV, Kruislaan 419, 1098
VA Amsterdam, Netherlands.

Other Digital Cash Protocols

There are other digital cash protocols; see [707, 1554, 734, 1633, 973]. Some of them involve some
pretty complicated mathematics. Generally, the various digital cash protocols can be divided into
various categories. On-line systems require the merchant to communicate with the bank at every
sale, much like today’ s credit-card protocols. If there is a problem, the bank doesn’t accept the cash
and Alice cannot cheat.

Off-line systems, like Protocol #4, require no communication between the merchant and the bank
until after the transaction between the merchant and the customer. These systems do not prevent
Alice from cheating, but instead detect her cheating. Protocol #4 detected her cheating by making
Alice sidentity known if shetried to cheat. Alice knows that thiswill happen, so she doesn’t cheat.

Another way isto create a special smart card (see Section 24.13) containing a tamperproof chip

called an observer [332, 341, 387]. The observer chip keeps a mini database of all the pieces of
digital cash spent by that smart card. If Alice attemptsto copy some digital cash and spend it twice,
the imbedded observer chip would detect the attempt and would not allow the transaction. Since the
observer chip istamperproof, Alice cannot erase the mini-database without permanently damaging
the smart card. The cash can wend its way through the economy; when it isfinally deposited, the
bank can examine the cash and determine who, if anyone, cheated.

Digital cash protocols can aso be divided along another line. Electronic coins have afixed value;
people using this system will need severa coinsin different denominations. Electronic checks can
be used for any amount up to a maximum value and then returned for arefund of the unspent
portion.

Two excellent and completely different off-line electronic coin protocols are [225, 226, 227] and
[563, 564, 565]. A system called NetCash, with weaker anonymity properties, has also been
proposed [1048, 1049]. Another new system is[289].

In[1211], Tatsuaki Okamoto and Kazuo Ohtalist six properties of an ideal digital cash system:

1. Independence. The security of the digital cash is not dependent on any physical location.
The cash can be transferred through computer networks.

2. Security. The digital cash cannot be copied and reused.

3. Privacy (Untraceability). The privacy of the user is protected; no one can trace the
relationship between the user and his purchases.

4. Off-line Payment. When a user pays for a purchase with electronic cash, the protocol
between the user and the merchant is executed off-line. That is, the shop does not need to be
linked to a host to process the user’ s payment.

5. Transferability. The digital cash can be transferred to other users.

6. Divisibility. A piece of digital cashin agiven amount can be subdivided into smaller pieces
of cash in smaller amounts. (Of course, everything has to total up properly in the end.)

The protocols previously discussed satisfy properties 1, 2, 3, and 4, but not 5 and 6. Some on-line
digital cash systems satisfy all properties except 4 [318, 413, 1243]. Thefirst off-line digital cash
system that satisfies properties 1, 2, 3, and 4, similar to the one just discussed, was proposed in
[339]. Okamoto and Ohta proposed a system that satisfies properties 1 through 5 [1209]; they aso
proposed a system that satisfies properties 1 through 6 as well, but the data requirement for asingle
purchase is approximately 200 megabytes. Another off-line divisible coin system is described in
[522].

The digital cash scheme proposed in [1211], by the same authors, satisfies properties 1 through 6,
without the enormous data requirements. The total data transfer for a payment is about 20 kilobytes,
and the protocol can be completed in several seconds. The authors consider this the first ideal
untraceabl e electronic cash system.

Anonymous Credit Cards

This protocol [988] uses several different banks to protect the identity of the customer. Each
customer has an account at two different banks. The first bank knows the person’sidentity and is
willing to extend him credit. The second bank knows the customer only under a pseudonym (similar
to a numbered Swiss bank account).

The customer can withdraw funds from the second bank by proving that the account is his. However,
the bank does not know the person and is unwilling to extend him credit. The first bank knows the
customer and transfers funds to the second bank—uwithout knowing the pseudonym. The customer
then spends these funds anonymously. At the end of the month, the second bank gives the first bank

abill, which it trusts the bank to pay. The first bank passes the bill on to the customer, which it trusts
the customer to pay. When the customer pays, the first bank transfers additional funds to the second
bank. All transactions are handled through an intermediary, which acts sort of like an electronic
Federal Reserve: settling accounts among banks, logging messages, and creating an audit trail.

Exchanges between the customer, merchant, and various banks are outlined in [988]. Unless
everyone colludes against the customer, his anonymity is assured. However, thisis not digital cash; it
is easy for the bank to cheat. The protocol allows customers to keep the advantages of credit cards
without giving up their privacy.

Part | |
Cryptographic Techniques

Chapter 7
Key Length

7.1 Symmetric Key Length

The security of a symmetric cryptosystem is a function of two things: the strength of the algorithm
and the length of the key. The former is more important, but the latter is easier to demonstrate.

Assume that the strength of the algorithm is perfect. Thisis extremely difficult to achieve in practice,
but easy enough for this example. By perfect, | mean that there is no better way to break the
cryptosystem other than trying every possible key in a brute-force attack.

To launch this attack, a cryptanalyst needs a small amount of ciphertext and the corresponding
plaintext; a brute-force attack is a known-plaintext attack. For a block cipher, the cryptanalyst would
need a block of ciphertext and corresponding plaintext: generally 64 bits. Getting this plaintext and
ciphertext is easier than you might imagine. A cryptanalyst might get a copy of a plaintext message
by some means and intercept the corresponding ciphertext. He may know something about the
format of the ciphertext: For example, it isa WordPerfect file, it has a standard el ectronic-mail
message header, it isaUNIX directory file, itisa TIFF image, or it isastandard record in a
customer database. All of these formats have some predefined bytes. The cryptanalyst doesn’t need
much plaintext to launch this attack.

Calculating the complexity of abrute-force attack is easy. If the key is 8 bitslong, there are 28 or
256, possible keys. Therefore, it will take 256 attempts to find the correct key, with a 50 percent

chance of finding the key after half of the attempts. If the key is 56 bits long, then there are 26
possible keys. Assuming a supercomputer can try amillion keys a second, it will take 2285 yearsto
find the correct key. If the key is 64 bitslong, then it will take the same supercomputer about

585,000 yearsto find the correct key among the 264 possible keys. If the key is 128 bits long, it will
take 10%° years. The universeis only 1010 years old, so 10%° yearsis along time. With a 2048-bit

key, amillion million-attempts-per-second computers working in parallel will spend 10°%7 years
finding the key. By that time the universe will have long collapsed or expanded into nothingness.

Before you rush to invent a cryptosystem with an 8-kilobyte key, remember the other side to the
strength question: The algorithm must be so secure that there is no better way to break it than with a
brute-force attack. Thisis not as easy as it might seem. Cryptography is a subtle art. Cryptosystems
that look perfect are often extremely weak. Strong cryptosystems, with a couple of minor changes,
can become weak. The warning to the amateur cryptographer is to have a healthy, almost paranoid,
suspicion of any new algorithm. It is best to trust algorithms that professional cryptographers have
scrutinized for years without cracking them and to be suspicious of algorithm designers’ grandiose
claims of security.

Recall an important point from Section 1.1: The security of a cryptosystem should rest in the key,
not in the details of the algorithm. Assume that any cryptanalyst has access to al the details of your
algorithm. Assume he has access to as much ciphertext as he wants and can mount an intensive
ciphertext-only attack. Assume that he can mount a plaintext attack with as much data as he needs.
Even assume that he can mount a chosen-plaintext attack. If your cryptosystem can remain secure,
even in the face of all that knowledge, then you’ ve got something.

That warning aside, there is still plenty of room in cryptography to maneuver. In redlity, this kind of
security isn't really necessary in many situations. Most adversaries don’t have the knowledge and
computing resources of amgor government, and even the ones who do probably aren’t that
interested in breaking your cryptosystem. If you' re plotting to overthrow a major government, stick

with the tried and true algorithms in the back of the book. The rest of you, have fun.
Time and Cost Estimates for Brute-Force Attack

Remember that a brute-force attack istypically a known-plaintext attack; it requires a small amount
of ciphertext and corresponding plaintext. If you assume that a brute-force attack is the most efficient
attack possible against an algorithm—a big assumption—then the key must be long enough to make
the attack infeasible. How long is that?

Two parameters determine the speed of a brute-force attack: the number of keys to be tested and the
speed of each test. Most symmetric algorithms accept any fixed-length bit pattern as the key. DES

has a 56-hit key; it has 2% possible keys. Some algorithms discussed in this book have a 64-bit key;
these have 264 possible keys. Others have a 128-bit key.

The speed at which each possible key can be tested is also afactor, but aless important one. For the
purposes of thisanalysis, | will assume that each different algorithm can be tested in the same
amount of time. The reality may be that one algorithm may be tested two, three, or even ten times
faster than another. But since we are looking for key lengths that are millions of times more difficult
to crack than would be feasible, small differences due to test speed areirrelevant.

Most of the debate in the cryptologic community about the efficiency of brute-force attacks has
centered on the DES algorithm. In 1977, Whitfield Diffie and Martin Hellman [497] postul ated the
existence of a special-purpose DES-cracking machine. This machine consisted of a million chips,

each capable of testing amillion keys per second. Such a machine could test 26 keysin 20 hours. If
built to attack an algorithm with a 64-bit key, it could test all 264 keysin 214 days.

A brute-force attack istailor-made for parallel processors. Each processor can test a subset of the
keyspace. The processors do not have to communicate among themselves; the only communication
required at all isa single message signifying success. There are no shared memory requirements. It is
easy to design a machine with amillion parallel processors, each working independent of the others.

More recently, Michael Wiener decided to design a brute-force cracking machine [1597,1598]. (He
designed the machine for DES, but the analysis holds for most any algorithm.) He designed
specialized chips, boards, and racks. He estimated prices. And he discovered that for $1 million,
someone could build a machine that could crack a 56-bit DES key in an average of 3.5 hours (results
guaranteed in 7 hours). And that the price/speed ratio is linear. Table 7.1 generalizes these numbers
to avariety of key lengths. Remember Moore' s Law: Computing power doubles approximately
every 18 months. This means costs go down a factor of 10 every five years; what cost $1 million to
build in 1995 will cost a mere $100,000 in the year 2000. Pipelined computers might do even better
[724].

For 56-hit keys, these numbers are within the budgets of most large companies and many criminal
organizations. The military budgets of most industrialized nations can afford to break 64-bit keys.
Breaking an 80-bit key is still beyond the realm of possibility, but if current trends continue that will
changein only 30 years.

Of coursg, it isludicrous to estimate computing power 35 yearsin the future. Breakthroughs in some
science-fiction technology could make these numberslook like ajoke. Conversely, physical
[imitations unknown at the present time could make them unrealistically optimistic. In cryptography
it iswise to be pessimistic. Fielding an algorithm with an 80-bit key seems extremely short-sighted.
Insist on at least 112-bit keys.

Table7.1

Average Time Estimatesfor a Hardwar e Brute-For ce Attack in 1995

Length of Key in Bits

Cost 40 56 64 80 112 128

$100 K 2 seconds 35 hours lyear 70,000years 10Myears 1019 years
$1M .2 seconds 3.5 hours 37days 7000years 103 years 10'®years
$10 M .02 seconds 21 minutes 4 days 700years 102 years 10 years
$100M 2 milliseconds 2 minutes 9 hours 70years 10 years 100 years
$1G 2milliseconds 13 seconds 1 hour 7years 100years 10%° years

$10G .02milliseconds 1second 54 minutes 245days 10%years 10 years
$100G 2 microseconds .1 second 32 seconds 24 days 108 years 1013 years
$1T 2microseconds .0lsecond 3seconds ~ 24days 10’ years 102 years
$10T .02 microseconds 1 millisecond .3 second 6hours 109years 10 years

If an attacker wantsto break a key badly enough, all he hasto do is spend money. Consequently, it
seems prudent to try to estimate the minimum “value” of akey: How much value can be trusted to a
single key before it makes economic senseto try to break? To give an extreme example, if an
encrypted message is worth $1.39, then it wouldn’t make much financial sense to set a $10-million
cracker to the task of recovering the key. On the other hand, if the plaintext message is worth $100
million, then decrypting that single message would justify the cost of building the cracker. Also, the
value of some messages decreases rapidly with time.

Software Crackers

Without special-purpose hardware and massively parallel machines, brute-force attacks are
significantly harder. A software attack is about a thousand times slower than a hardware attack.

Thereal threat of a software-based brute-force attack is not that it is certain, but that it is“free.” It
costs nothing to set up a microcomputer to test possible keys whenever itisidle. If it finds the
correct key—qgreat. If it doesn’t, then nothing islost. It costs nothing to set up an entire
microcomputer network to do that. A recent experiment with DES used the collective idle time of 40

workstations to test 234 keysin asingle day [603]. At this speed, it will take four million days to test
al keys, but if enough peopletry attacks like this, then someone somewhere will get lucky. Aswas
said in [603]:

The crux of the software threat is sheer bad luck. Imagine a university computer
network of 512 workstations, networked together. On some campuses this would be a
medium-sized network. They could even be spread around the world, coordinating their
activity through electronic mail. Assume each workstation is capable of running [the
algorithm] at arate of 15,000 encryptions per second.... Allowing for the overhead of
testing and changing keys, this comes down to...8192 tests per second per machine. To
exhaust [a 56-bit] keyspace with this setup would take 545 years (assuming the network
was dedicated to the task twenty-four hours per day). Notice, however, that the same
calculations give our hypothetical student hackers one chance in 200,000 of cracking a
key in one day. Over along weekend their odds increase to one chance in sixty-six
thousand. The faster their hardware, or the more machines involved, the better their

chance becomes. These are not good odds for earning a living from horse racing, but
they’ re not the stuff of good press releases either. They are much better odds than the
Government gives on its lotteries, for instance. “ One-in-a-million”? “Couldn’t happen
again in athousand years’? It is no longer possible to say such things honestly. Isthisan
acceptable ongoing risk?

Using an algorithm with a 64-bit key instead of a 56-bit key makes this attack 256 times more
difficult. With a 40-bit key, the pictureisfar more bleak. A network of 400 computers, each capable
of performing 32,000 encryptions per second, can complete a brute-force attack against a 40-bit key
inasingle day. (In 1992, the RC2 and RC4 algorithms were approved for export with a 40-bit key—
see Section 13.8.)

A 128-hit key makes a brute-force attack ridiculous even to contemplate. Industry experts estimate
that by 1996 there will be 200 million computers in use worldwide. This estimate includes
everything from giant Cray mainframes to subnotebooks. If every one of those computers worked
together on this brute-force attack, and each computer performed amillion encryptions per second
every second, it would still take amillion times the age of the universe to recover the key.

Neural Networks

Neural nets aren’t terribly useful for cryptanalysis, primarily because of the shape of the solution
space. Neural netswork best with problems that have a continuity of solutions, some better than
others. This allows aneural net to learn, proposing better and better solutions as it does. Breaking an
algorithm providesfor very little in the way of learning opportunities: Y ou either recover the key or
you don’'t. (At least thisistrueif the agorithm is any good.) Neural nets work well in structured
environments where there is something to learn, but not in the high-entropy, seemingly random
world of cryptography.

Viruses

The greatest difficulty in getting millions of computers to work on a brute-force attack is convincing
millions of computer owners to participate. You could ask politely, but that’s time-consuming and
they might say no. Y ou could try breaking into their machines, but that’s even more time-consuming
and you might get arrested. Y ou could also use a computer virus to spread the cracking program
more efficiently over as many computers as possible.

Thisisaparticularly insidious idea, first presented in [1593]. The attacker writes and lets loose a
computer virus. Thisvirus doesn’t reformat the hard drive or delete files; it works on a brute-force
cryptanalysis problem whenever the computer isidle. Various studies have shown that
microcomputers are idle between 70 percent and 90 percent of the time, so the virus shouldn’t have
any trouble finding time to work on itstask. If it is otherwise benign, it might even escape notice
while it doesits work.

Eventually, one machine will stumble on the correct key. At this point there are two ways of
proceeding. First, the virus could spawn a different virus. It wouldn’t do anything but reproduce and
delete any copies of the cracking virusit finds but would contain the information about the correct
key. This new virus would simply propagate through the computer world until it lands on the
computer of the person who wrote the origina virus.

A second, sneakier approach would be for the virus to display this message on the screen:

There is a serious bug in this conputer.
Pl ease call 1-800-123-4567 and read the
followi ng 64-bit nunber to the operator:

XXXX XXXX XXXX XXXX

There is a $100 reward for the first
person to report this bug.

How efficient is this attack? Assume the typical infected computer tries athousand keys per second.
Thisrateisfar less than the computer’ s maximum potential, because we assume it will be doing
other things occasionally. Also assume that the typical virus infects 10 million machines. This virus
can break a 56-bit key in 83 days and a 64-bit key in 58 years. Y ou might have to bribe the antiviral
software makers, but that’s your problem. Any increase in computer speeds or the virus infection
rate would, of course, make this attack more efficient.

The Chinese Lottery

The Chinese Lottery is an eclectic, but possible, suggestion for amassively parallel cryptanalysis
machine [1278]. Imagine that a brute-force, million-test-per-second cracking chip was built into
every radio and television sold. Each chip is programmed to test a different set of keys automatically
upon receiving a plaintext/ciphertext pair over the airwaves. Every time the Chinese government
wants to break akey, it broadcasts the data. All the radios and televisions in the country start
chugging away. Eventually, the correct key will appear on someone’ s display, somewhere in the
country. The Chinese government pays a prize to that person; this makes sure that the result is
reported promptly and properly, and also helps the sale of radios and televisions with the cracking
chips.

If every man, woman, and child in Chinaowns aradio or television, then the correct key to a 56-bit
algorithm will appear in 61 seconds. If only 1 in 10 Chinese owns aradio or television—closer to
reality—the correct key will appear in 10 minutes. The correct key for a 64-bit algorithm will appear
in 4.3 hours—43 hoursif only 1in 10 owns aradio or television.

Some modifications are required to make this attack practical. First, it would be easier to have each
chip try random keys instead of a unique set of keys. This would make the attack about 39 percent
slower—not much in light of the numbers we' re working with. Also, the Chinese Communist party
would have to mandate that every person listen to or watch a certain show at a certain time, just to
make sure that all of the radios and televisions are operating when the plaintext/ciphertext pair is
broadcast. Finaly, everyone would have to be instructed to call a Central-Party-Whatever-1t’' s-Called
if akey ever shows up on their screen, and then to read off the string of numbers appearing there.

Table 7.2 shows the effectiveness of the Chinese Lottery for different countries and different key
lengths. Chinawould clearly be in the best position to launch such an attack if they have to outfit
every man, woman, and child with their own television or radio. The United States has fewer people
but alot more equipment per capita. The state of Wyoming could break a 56-bit key all by itself in
less than aday.

Biotechnology

If biochips are possible, then it would be foolish not to use them as a distributed brute-force
cryptanalysis tool. Consider a hypothetical animal, unfortunately called a“DESosaur” [1278]. It
consists of biological cells capable of testing possible keys. The plaintext/ciphertext pair is broadcast
to the cells via some optical channel (these cells are transparent, you see). Solutions are carried to the
DESosaur’ s speech organ via special cellsthat travel through the animal’s circulatory system.

The typical dinosaur had about 101 cells (excluding bacteria). If each of them can perform amillion
encryptions per second (granted, thisisabig if), breaking a 56-bit key would take seven ten-

thousandths of a second. Breaking a 64-hit key would take less than two tenths of a second. Breaking
a 128-bit key would still take 101 years, though.

Table7.2
Brute-Force Cracking Estimatesfor Chinese L ottery

Timeto Break
of

Country Population Televisions/Radios 56-bit 64-bit
China 1,190,431,000 257,000,000 280 seconds 20 hours
u.s 260,714,000 739,000,000 97 seconds 6.9 hours
Irag 19,890,000 4,730,000 4.2 hours 44 days
I srael 5,051,000 3,640,000 5.5 hours 58 days
Wyoming 470,000 1,330,000 15 hours 160 days
Winnemucca, NV 6,100 17,300 48 days 34 years

(All datais from the 1995 World Almanac and Book of Facts.)

Another biological approach isto use genetically engineered cryptanalytic algae that are capable of
performing brute-force attacks against cryptographic algorithms [1278]. These organisms would
make it possible to construct a distributed machine with more processors because they could cover a
larger area. The plaintext/ciphertext pair could be broadcast by satellite. If an organism found the
result, it could induce the nearby cells to change color to communicate the solution back to the
satellite.

Assume the typical algae cell isthe size of a cube 10 microns on aside (thisis probably alarge

estimate), then 1012 of them can fill a cubic meter. Pump them into the ocean and cover 200 square
miles (518 square kilometers) of water to a meter deep (you figure out how to do it—I"m just the

idea man), and you'd have 10%3 (over ahundred billion gallons) of them floating in the ocean. (For
comparison, the Exxon Valdez spilled 10 million gallons of oil.) If each of them can try amillion
keys per second, they will recover the key for a 128-bit algorithm in just over 100 years. (The
resulting algae bloom is your problem.) Breakthroughs in algae processing speed, algae diameter, or
even the size puddle one could spread across the ocean, would reduce these numbers significantly.

Don’t even ask me about nanotechnol ogy.
Thermodynamic Limitations

One of the consequences of the second law of thermodynamicsis that a certain amount of energy is
necessary to represent information. To record asingle bit by changing the state of a system requires
an amount of energy no lessthan kT, where T is the absolute temperature of the system and k isthe
Boltzman constant. (Stick with me; the physics lesson is almost over.)

Given that k =1.38* 10716 erg/°K elvin, and that the ambient temperature of the universeis 3.2°K, an

ideal computer running at 3.2°K would consume 4.4* 10716 ergs every timeiit set or cleared abit. To
run a computer any colder than the cosmic background radiation would require extra energy to run a
heat pump.

Now, the annual energy output of our sun is about 1.21* 10%! ergs. This is enough to power about

2.7%10°0 5 ngle bit changes on our ideal computer; enough state changes to put a 187-bit counter
through all its values. If we built a Dyson sphere around the sun and captured all of its energy for 32

years, without any loss, we could power a computer to count up to 2192 Of course, it wouldn't have
the energy left over to perform any useful calculations with this counter.

But that's just one star, and ameasly one at that. A typical supernova releases something like 10°2
ergs. (About a hundred times as much energy would be released in the form of neutrinos, but let
them go for now.) If all of this energy could be channeled into a single orgy of computation, a 219-
bit counter could be cycled through all of its states.

These numbers have nothing to do with the technology of the devices; they are the maximums that
thermodynamics will allow. And they strongly imply that brute-force attacks against 256-bit keys
will be infeasible until computers are built from something other than matter and occupy something
other than space.

7.2 Public-Key Key Length

One-way functions were discussed in Section 2.3. Multiplying two large primes is a one-way
function; it’ s easy to multiply the numbers to get a product but hard to factor the product and recover
the two large primes (see Section 11.3). Public-key cryptography uses this idea to make atrap-door
one-way function. Actually, that’s alie; factoring is conjectured to be a hard problem (see Section
11.4). Asfar as anyone knows, it seemsto be. Evenif it is, no one can prove that hard problems are
actually hard. Most everyone assumes that factoring is hard, but it has never been mathematically
proven one way or the other.

Thisisworth dwelling on. It is easy to imagine that 50 years in the future we will all sit around,
reminiscing about the good old days when people used to think factoring was hard, cryptography
was based on factoring, and companies actually made money from this stuff. It is easy to imagine
that future developments in number theory will make factoring easier or that developmentsin
complexity theory will make factoring trivial. There’ s no reason to believe thiswill happen—and
most people who know enough to have an opinion will tell you that it is unlikely—but there’ s also
no reason to believe it won't.

In any case, today’ s dominant public-key encryption algorithms are based on the difficulty of
factoring large numbers that are the product of two large primes. (Other algorithms are based on
something called the Discrete Logarithm Problem, but for the moment assume the same discussion
applies.) These algorithms are also susceptible to a brute-force attack, but of a different type.
Breaking these algorithms does not involve trying every possible key; breaking these algorithms
involves trying to factor the large number (or taking discrete logarithmsin a very large finite field—
asimilar problem). If the number istoo small, you have no security. If the number is large enough,
you have security against al the computing power in the world working from now until the sun goes
nova—given today’ s understanding of the mathematics. Section 11.3 discusses factoring in more
mathematical detail; here | will limit the discussion to how long it takes to factor numbers of various
lengths.

Factoring large numbersis hard. Unfortunately for algorithm designers, it is getting easier. Even
worsg, it is getting easier faster than mathematicians expected. In 1976 Richard Guy wrote: “1 shall

be surprised if anyone regularly factors numbers of size 108 without special form during the present
century” [680]. In 1977 Ron Rivest said that factoring a 125-digit number would take 40 quadrillion
years [599]. In 1994 a 129-digit number was factored [66]. If thereisany lessonin all this, it isthat
making predictionsisfoolish.

Table 7.3 shows factoring records over the past dozen years. The fastest factoring algorithm during
the time was the quadratic sieve (see Section 11.3).

These numbers are pretty frightening. Today it is not uncommon to see 512-bit numbersused in
operational systems. Factoring them, and thereby completely compromising their security, iswell in
the range of possibility: A weekend-long worm on the Internet could do it.

Computing power is generally measured in mips-years: a one-million-instruction-per-second (mips)
computer running for one year, or about 3* 1012 instructions. By convention, a 1-mips machine is
equivalent to the DEC VAX 11/780. Hence, amips-year isaVAX 11/780 running for ayear, or the

equivalent. (A 100 MHz Pentium is about a 50 mips machine; a 1800-node Intel Paragon is about
50,000.)

The 1983 factorization of a 71-digit number required 0.1 mips-years, the 1994 factorization of a 129-
digit number required 5000. This dramatic increase in computing power resulted largely from the
introduction of distributed computing, using the idle time on a network of workstations. This trend
was started by Bob Silverman and fully developed by Arjen Lenstraand Mark Manasse. The 1983
factorization used 9.5 CPU hours on asingle Cray X-MP; the 1994 factorization took 5000 mips-
years and used the idle time on 1600 computers around the world for about eight months. Modern
factoring methods lend themselves to this kind of distributed implementation.

The picture gets even worse. A new factoring algorithm has taken over from the quadratic sieve: the
general number field sieve. In 1989 mathematicians would have told you that the general number
field sieve would never be practical. In 1992 they would have told you that it was practical, but only
faster than the quadratic sieve for numbers greater than 130 to 150 digits or so. Today it is known to
be faster than the quadratic sieve for numbers well below 116 digits [472,635]. The general number
field sieve can factor a 512-bit number over 10 times faster than the quadratic sieve. The algorithm
would require less than ayear to run on an 1800-node Intel Paragon. Table 7.4 gives the number of
mips-years required to factor numbers of different sizes, given current implementations of the
general number field sieve [1190].

Table7.3
Factoring Using the Quadratic Sieve

of decimal How many times harder to
Y ear digitsfactored factor a 512-bit number
1983 71 >20 million
1985 80 >2 million
1988 90 250,000
1989 100 30,000
1993 120 500
1994 129 100

And the general number field sieveis still getting faster. Mathematicians keep coming up with new
tricks, new optimizations, new techniques. There' s no reason to think this trend won’t continue. A
related algorithm, the special number field sieve, can already factor numbers of a certain specialized
form—numbers not generally used for cryptography—much faster than the general number field
sieve can factor general numbers of the same size. It is not unreasonabl e to assume that the general
number field sieve can be optimized to run thisfast [1190]; it is possible that the NSA already knows
how to do this. Table 7.5 gives the number of mips-years required for the special number field sieve

to factor numbers of different lengths [1190].

At a European Institute for System Security workshop in 1991, the participants agreed that a 1024-
bit modulus should be sufficient for long-term secrets through 2002 [150]. However, they warned:
“ Although the participants of this workshop feel best qualified in their respective areas, this
statement [with respect to lasting security] should be taken with caution.” Thisis good advice.

The wise cryptographer is ultra-conservative when choosing public-key key lengths. To determine
how long akey you need requires you to look at both the intended security and lifetime of the key,
and the current state-of-the-art of factoring. Today you need a 1024-bit number to get the level of
security you got from a 512-bit number in the early 1980s. If you want your keysto remain secure
for 20 years, 1024 bitsislikely too short.

Even if your particular secrets aren’t worth the effort required to factor your modulus, you may be at
risk. Imagine an automatic banking system that uses RSA for security. Mallory can stand up in court
and say: “Did you read in the newspaper in 1994 that RSA-129 was broken, and that 512-bit
numbers can be factored by any organization willing to spend afew million dollars and wait a few
months? My bank uses 512-bit numbers for security and, by the way, | didn’t make these seven
withdrawals.” Even if Mallory islying, the judge will probably put the onus on the bank to proveit.

Table7.4
Factoring Using the General Number Field
Sieve

of bits Mips-yearsrequired to factor

512 30,000
768 2+108
1024 3*1011
1280 11014
1536 3+1016
2048 3+10%0
Table7.5
Factoring Using the Special Number Field
Sieve

of bits Mips-yearsrequired to factor

512 <200
768 100,000
1024 3+107
1280 3+10°
1536 2+1011

2048 41014

Why not use 10,000-bit keys? Y ou can, but remember that you pay a price in computation time as
your keys get longer. Y ou want a key long enough to be secure, but short enough to be
computationally usable.

Earlier in this section | called making predictions foolish. Now | am about to make some. Table 7.6
gives my recommendations for public-key lengths, depending on how long you require the key to be
secure. There are three key lengths for each year, one secure against an individual, one secure
against amajor corporation, and the third secure against a major government.

Here are some assumptions from [66]:

We believe that we could acquire 100 thousand machines without superhuman or
unethical efforts. That is, we would not set free an Internet worm or virus to find
resources for us. Many organizations have several thousand machines each on the net.
Making use of their facilities would require skillful diplomacy, but should not be
impossible. Assuming the 5 mips average power, and one year elapsed time, it is not too
unreasonable to embark on a project which would require half amillion mips years.

The project to factor the 129-digit number harnessed an estimated 0.03 percent of the total
computing power of the Internet [1190], and they didn’t even try very hard. It isn't unreasonable to
assume that a well-publicized project can harness 2 percent of the world’'s computing power for a
year.

Assume a dedicated cryptanalyst can get his hands on 10,000 mips-years, alarge corporation can get

107 mips-years, and that a large government can get 10° mips-years. Also assume that computing
power will increase by afactor of 10 every five years. And finally, assume that advances in factoring
mathematics alow us to factor general numbers at the speeds of the special number field sieve. (This
isn’t possible yet, but the breakthrough could occur at any time.) Table 7.6 recommends different
key lengths for security during different years.

Table 7.6
Recommended Public-key Key Lengths (in bits)

Y ear vs. Individual vs. Corporation vs. Government
1995 768 1280 1536
2000 1024 1280 1536
2005 1280 1536 2048
2010 1280 1536 2048
2015 1536 2048 2048

Remember to take the value of the key into account. Public keys are often used to secure things of
great value for along time: the bank’s master key for adigital cash system, the key the government
uses to certify its passports, or a notary public’s digital signature key. It probably isn’t worth the
effort to spend months of computing time to break an individual’s private key, but if you can print
your own money with a broken key the idea becomes more attractive. A 1024-bit key islong enough
to sign something that will be verified within the week, or month, or even afew years. But you don’t
want to stand up in court 20 years from now with a digitally signed document and have the
opposition demonstrate how to forge documents with the same signature.

Making predictions beyond the near future is even more foolish. Who knows what kind of advances

in computing, networking, and mathematics are going to happen by 2020? However, if you look at
the broad picture, in every decade we can factor numbers twice as long as in the previous decade.
Thisleadsto Table 7.7.

On the other hand, factoring technology may reach its Omega point long before 2045. Twenty years
from now, we may be able to factor anything. | think that is unlikely, though.

Not everyone will agree with my recommendations. The NSA has mandated 512-bit to 1024-bit keys
for their Digital Signature Standard (see Section 20.1)—far less than | recommend for long-term
security. Pretty Good Privacy (see Section 24.12) has a maximum RSA key length of 2047 bits.
Arjen Lenstra, the world’s most successful factorer, refuses to make predictions past 10 years[949].
Table 7.8 gives Ron Rivest’ s key-length recommendations, originally made in 1990, which |
consider much too optimistic [1323]. While his analysis |ooks fine on paper, recent history illustrates
that surprises regularly happen. It makes sense to choose your keysto be resilient against future
surprises.

Table7.7
L ong-range Factoring Predictions

Y ear Key Length (in bits)
1995 1024
2005 2048
2015 4096
2025 8192
2035 16,384
2045 32,768

Low estimates assume a budget of $25,000, the quadratic sieve algorithm, and a technology advance
of 20 percent per year. Average estimates assume a budget of $25 million, the general number field
sieve algorithm, and a technology advance of 33 percent per year. High estimates assume a budget of
$25 billion, ageneral quadratic sieve algorithm running at the speed of the special number field
sieve, and a technology advance of 45 percent per year.

There is always the possibility that an advance in factoring will surprise me aswell, but | factored
that into my calculations. But why trust me? | just proved my own foolishness by making
predictions.

DNA Computing

Now it getsweird. In 1994 Leonard M. Adleman actually demonstrated a method for solving an NP-
complete problem (see Section 11.2) in a biochemistry laboratory, using DNA molecules to
represent guesses at solutionsto the problem [17]. (That’s “ solutions” meaning “answers,” not
meaning “liquids containing solutes.” Terminology in thisfield is going to be awkward.) The
problem that Adleman solved was an instance of the Directed Hamiltonian Path problem: Given a
map of cities connected by one-way roads, find a path from City A to City Z that passes exactly once
through all other cities on the map. Each city was represented by a different random 20-base string of
DNA; with conventional molecular biology techniques, Adleman synthesized 50 picomols (30
million million molecules) of the DNA string representing each city. Each road was also represented
by a 20-base DNA string, but these strings were not chosen randomly: They were cleverly chosen so
that the “beginning” end of the DNA string representing the road from City Pto City K (“Road PK”)

would tend to stick to the DNA string representing City P, and the end of Road PK would tend to
stick to City K.

Table7.8
Rivest’s Optimistic Key-length
Recommendations (in bits)

Y ear L ow Average High
1990 398 515 1289
1995 405 542 1399
2000 422 572 1512
2005 439 602 1628
2010 455 631 1754
2015 472 661 1884
2020 489 677 2017

Adleman synthesized 50 picomols of the DNA representing each road, mixed them all together with
the DNA representing all the cities, and added a ligase enzyme, which links together the ends of
DNA molecules. The clever relationship between the road DNA strings and the city DNA strings
causes the ligase to link the road DNA strings together in alegal fashion. That is, the “exit” end of
the road from P to K will aways be linked to the “entrance” end of some road that originates at City
K, never to the “exit” end of any road and never to the “entrance” end of aroad that originates at
some city other than K. After acarefully limited reaction time, the ligase has built alarge number of
DNA strings representing legal but otherwise random multiroad paths within the map.

From this soup of random paths, Adleman can find the tiniest trace—perhaps even asingle
molecule—of the DNA that represents the answer to the problem. Using common techniques of
molecular biology, he discards all the DNA strings representing paths that are too long or too short.
(The number of roads in the desired path must equal the number of cities minus one.) Next he
discards all the DNA strings that do not pass through City A, then those that miss City B, and so
forth. If any DNA survives this screening, it is examined to find the sequence of roads that it
represents: Thisis the solution to the directed Hamiltonian path problem.

By definition, an instance of any NP-complete problem can be transformed, in polynomial time, into
an instance of any other NP-complete problem, and therefore into an instance of the directed
Hamiltonian path problem. Since the 1970s, cryptologists have been trying to use NP-complete
problems for public-key cryptography.

While the instance that Adleman solved was very modest (seven cities on his map, a problem that
can be solved by inspection in afew minutes), the technique isin its infancy and has no forbidding
obstacles keeping it from being extended to larger problems. Thus, arguments about the security of
cryptographic protocols based on NP-complete problems, arguments that heretofore have begun,
“Suppose an adversary has a million processors, each of which can perform amillion tests each
second,” may soon have to be replaced with, * Suppose an adversary has a thousand fermentation
vats, each 20,000 litersin capacity.”

Quantum Computing

Now, it gets even weirder. The underlying principle behind quantum computing involves Einstein’s
wave-particle duality. A photon can simultaneously exist in alarge number of states. A classic

exampleisthat a photon behaves like a wave when it encounters a partially silvered mirror; it isboth
reflected and transmitted, just as an ocean wave striking a seawall with asmall opening in it will
both reflect off the wall and pass through it. However, when a photon is measured, it behaveslike a
particle and only a single state can be detected.

In [1443], Peter Shor outlines adesign for afactoring machine based on quantum mechanical
principles. Unlike a classical computer, which can be thought of as having asingle, fixed state at a
given time, a quantum computer has an internal wave function, which is a superposition of a
combination of the possible basis states. Computations transform the wave function, altering the
entire set of states in a single operation. In this way, a quantum computer is an improvement over
classical finite-state automata: It uses quantum propertiesto allow it to factor in polynomial time,
theoretically allowing one to break cryptosystems based on factoring or the discrete logarithm
problem.

The consensus is that quantum computers are compatible with the fundamental laws of quantum
mechanics. However, it is unlikely that a quantum factoring machine will be built in the foreseeable
future...if ever. One mgjor obstacle is the problem of decoherence, which causes superimposed
waveformsto lose their distinctness and makes the computer fail. Decoherence will make a quantum
computer running at 1° Kelvin fail after just one nanosecond. Additionally, an enormous number of
gates would be required to build a quantum factoring device; this may render the machine impossible
to build. Shor’s design requires a complete modular exponentiator. No internal clock can be used, so
millions or possibly billions of individual gates would be required to factor cryptographically
significant numbers. If n quantum gates have some minimum probability p of failure, the average

number of trials required per successful runis (1/(1 — p))". The number of gates required presumably
grows polynomially with the length (in bits) of the number, so the number of trials required would be
superexponential with the length of the numbers used—worse than factoring by trial division!

So, while quantum factorization is an area of great academic excitement, it is extremely unlikely that
it will be practical in the foreseeable future. But don’t say | didn’t warn you.

7.3 Comparing Symmetric and Public-Key Key Length

A system is going to be attacked at its weakest point. If you are designing a system that uses both
symmetric and public-key cryptography, the key lengths for each type of cryptography should be
chosen so that it is equally difficult to attack the system via each mechanism. It makes no sense to
use a symmetric algorithm with a 128-bit key together with a public-key algorithm with a 386-bit
key, just as it makes no sense to use a symmetric algorithm with a 56-bit key together with a public-
key algorithm with a 1024-bit key.

Table 7.9 lists public-key modulus lengths whose factoring difficulty roughly equals the difficulty of
a brute-force attack for popular symmetric key lengths.

Thistable saysthat if you are concerned enough about security to choose a symmetric algorithm
with a 112-hit key, you should choose a modulus length for your public-key algorithm of about 1792
bits. In general, though, you should choose a public-key length that is more secure than your
symmetric-key length. Public keys generally stay around longer, and are used to protect more
information.

7.4 Birthday Attacks against One-Way Hash Functions

There are two brute-force attacks against a one-way hash function. Thefirst is the most obvious:
Given the hash of message, H(M), an adversary would like to be able to create another document,
M’, such that H(M) = H(M"). The second attack is more subtle: An adversary would like to find two
random messages, M, and M", such that H(M) = H(M"). Thisiscaled acollision, and it isafar easier

attack than the first one.

Table7.9
Symmetric and Public-key Key Lengthswith
Similar Resistancesto Brute-For ce Attacks

Symmetric Public-key
Key Length Key Length
56 hits 384 bits
64 bits 512 bits
80 hits 768 bits
112 bits 1792 bits
128 bits 2304 bits

The birthday paradox is a standard statistics problem. How many people must be in aroom for the
chance to be greater than even that one of them shares your birthday? The answer is 253. Now, how
many people must there be for the chance to be greater than even that at least two of them will share
the same birthday? The answer is surprisingly low: 23. With only 23 people in the room, there are
still 253 different pairs of people in the room.

Finding someone with a specific birthday is analogous to the first attack; finding two people with the
same random birthday is analogous to the second attack. The second attack is commonly known as a
birthday attack.

Assume that a one-way hash function is secure and the best way to attack it is by using brute force. It
produces an m-bit output. Finding a message that hashes to a given hash value would require hashing

2™ random messages. Finding two messages that hash to the same value would only require hashing
22 random messages. A machine that hashes a million messages per second would take 600,000

years to find a second message that matched a given 64-bit hash. The same machine could find a pair
of messages that hashed to the same value in about an hour.

This meansthat if you are worried about a birthday attack, you should choose a hash-value twice as
long as you otherwise might think you need. For example, if you want to drop the odds of someone

breaking your system to lessthan 1in 280 yse a 160-bit one-way hash function.
7.5 How Long Should a Key Be?

There’ s no single answer to this question; it depends on the situation. To determine how much
security you need, you must ask yourself some questions. How much is your data worth? How long
does it need to be secure? What are your adversaries resources?

A customer list might be worth $1000. Financial datafor an acrimonious divorce case might be
worth $10,000. Advertising and marketing data for alarge corporation might be worth $1 million.
The master keysfor adigital cash system might be worth billions.

In the world of commaodities trading, secrets only need to be kept for minutes. In the newspaper
business, today’ s secrets are tomorrow’ s headlines. Product development information might need to
remain secret for ayear or two. U.S. Census data are required by law to remain secret for 100 years.

The guest list for your sister’ s surprise birthday party is only interesting to your nosy relatives.
Corporate trade secrets are interesting to rival companies. Military secrets are interesting to rival
militaries.

Y ou can even specify security requirements in these terms. For example:

The key length must be such that there is a probability of no morethan 1 in 232 that an
attacker with $100 million to spend could break the system within one year, even
assuming technology advances at arate of 30 percent per annum over the period.

Table 7.10, taken partially from [150], estimates the secrecy regquirements for several kinds of
information:

Future computing power is harder to estimate, but here is a reasonable rule of thumb: The efficiency
of computing equipment divided by price doubles every 18 months and increases by afactor of 10
every five years. Thus, in 50 years the fastest computers will be 10 billion times faster than today’ s!
Remember, too, that these numbers only relate to general -purpose computers; who knows what kind
of specialized cryptosystem-breaking equipment will be developed in the next 50 years?

Assuming that a cryptographic algorithm will be in use for 30 years, you can get some idea how
secure it must be. An algorithm designed today probably will not see general use until 2000, and will
still be used in 2025 to encrypt messages that must remain secret until 2075 or later.

Table7.10
Security Requirementsfor Different Information

Minimum

Typeof Traffic Lifetime Key Length
Tactical military information minutes’hours 5664 bits
Product announcements, mergers, interest rates days/weeks 64 bits
Long-term business plans years 64 bits
Trade secrets (e.g., recipe for Coca-Cola) decades 112 bits
H-bomb secrets >40 years 128 hits
Identities of spies >50 years 128 hits
Personal affairs >50 years 128 hits
Diplomatic embarrassments >65years at least 128 hits
U.S. census data 100 years at least 128 bits

7.6 Caveat Emptor

This entire chapter isawhole lot of nonsense. The very notion of predicting computing power 10
yearsin the future, let alone 50 years is absolutely ridiculous. These calculations are meant to be a
guide, nothing more. If the past is any guide, the future will be vastly different from anything we can
predict.

Be conservative. If your keys are longer than you imagine necessary, then fewer technological
surprises can harm you.

Chapter 8
Key Management

Alice and Bob have a secure communications system. They play mental poker, simultaneously sign
contracts, even exchange digital cash. Their protocols are secure. Their algorithms are top-notch.
Unfortunately, they buy their keys from Eve' s“Keys-R-Us,” whose slogan is“Y ou can trust us:
Security is the middle name of someone our ex-mother-in-law’ s travel agent met at the Kwik-E-
Mart.”

Eve doesn’t have to break the algorithms. She doesn’t have to rely on subtle flaws in the protocols.
She can use their keysto read all of Alice’sand Bob’s message traffic without lifting a cryptanalytic
finger.

In the real world, key management is the hardest part of cryptography. Designing secure
cryptographic algorithms and protocolsisn’'t easy, but you can rely on alarge body of academic
research. Keeping the keys secret is much harder.

Cryptanalysts often attack both symmetric and public-key cryptosystems through their key
management. Why should Eve bother going through all the trouble of trying to break the
cryptographic algorithm if she can recover the key because of sloppy key storage procedures? Why
should she spend $10 million building a cryptanalysis machine if she can spend $1000 bribing a
clerk? Spending amillion dollars to buy a well-placed communications clerk in a diplomatic
embassy can be a bargain. The Walkers sold U.S. Navy encryption keys to the Soviets for years. The
CIA’sdirector of counterintelligence went for less than $2 million, wife included. That’s far cheaper
than building massive cracking machines and hiring brilliant cryptanalysts. Eve can steal the keys.
She can arrest or abduct someone who knows the keys. She can seduce someone and get the keys
that way. (The Marines who guarded the U.S. Embassy in Moscow were not immune to that attack.)
It'sawholelot easier to find flaws in people than it isto find them in cryptosystems.

Alice and Bob must protect their key to the same degree as all the datait encrypts. If akey isn't
changed regularly, this can be an enormous amount of data. Unfortunately, many commercial
products simply proclaim “We use DES’ and forget about everything else. The results are not very
impressive.

For example, the DiskLock program for Macintosh (version 2.1), sold at most software stores, claims
the security of DES encryption. It encrypts files using DES. Itsimplementation of the DES algorithm
is correct. However, DiskLock stores the DES key with the encrypted file. If you know where to
look for the key, and want to read afile encrypted with DiskLock’s DES, recover the key from the
encrypted file and then decrypt the file. It doesn’t matter that this program uses DES encryption—the
implementation is completely insecure.

Further information on key management can be found in [457,98,1273,1225,775,357]. The following
sections discuss some of the issues and solutions.

8.1 Generating Keys

The security of an algorithm restsin the key. If you're using a cryptographically weak process to
generate keys, then your whole system is weak. Eve need not cryptanalyze your encryption
algorithm; she can cryptanalyze your key generation algorithm.

Reduced Keyspaces

DES has a 56-bit key. Implemented properly, any 56-bit string can be the key; there are 2°6 (1019)
possible keys. Norton Discreet for MS-DOS (versions 8.0 and earlier) only allows ASCII keys,
forcing the high-order bit of each byte to be zero. The program also converts lowercase letters to
uppercase (so the fifth bit of each byte is always the opposite of the sixth bit) and ignores the low-

order bit of each byte, resulting in only 240 possible keys. These poor key generation procedures
have made its DES ten thousand times easier to break than a proper implementation.

Table 8.1 gives the number of possible keys with various constraints on the input strings. Table 8.2
givesthe time required for an exhaustive search through all of those keys, given amillion attempts
per second. Remember, thereisvery little time differential between an exhaustive search for 8-byte
keys and an exhaustive search of 4-, 5-, 6-, 7-, and 8-byte keys.

All specialized brute-force hardware and parallel implementations will work here. Testing amillion
keys per second (either with one machine or with multiple machinesin paralléel), it isfeasible to
crack lowercase-letter and lowercase-letter-and-number keys up to 8 bytes long, a phanumeric-
character keys up to 7 bytes long, printable character and ASCII-character keys up to 6 bytes long,
and 8-hit-ASClI-character keys up to 5 bytes long.

Table8.1
Number of Possible Keys of Various K eyspaces

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte

Lowercase letters (26): 460,000 1.2*107 31*108 80100 21*101!
Lowercase letters and digits (36): 1,700,000 6.0-107 22¢10° 7.8-1010 281012
Alphanumeric characters (62): 1.5#107 9.2¢108 57%1010 35+1012 22+10M

Printable characters (95): 8110’ 7.7%10° 74*1011 707101 66*10%°
ASCI| characters (128): 277108 341010 44+102 s56%104 7.2¢1016
8-hit ASCI| characters (256); 4310° 1.1+1022 28*10% 7.2¢10%6 1.8+1019

Table 8.2
Exhaustive Sear ch of Various K eyspaces (assume one million attempts per second)

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte

Lowercase letters (26): Sseconds 12 seconds 5 minutes 2.2 hours 2.4 days
Lowercase lettersand digits (36): 1.7 seconds 1 minute 36 minutes 22 hours 33 days
Alphanumeric characters (62): 15 seconds 15 minutes 16 hours 4ldays 6.9 years
Printable characters (95): 14 minutes 2.1 hours 85days 22years 210years
ASCII characters (128): 4.5 minutes 9.5hours 5ldays 18years 2300 years
8-bit ASCII characters (256): 12hours 13days 89years 2300 years 580,000 years

And remember, computing power doubles every 18 months. If you expect your keys to stand up
against brute-force attacks for 10 years, you' d better plan accordingly.

Poor Key Choices

When people choose their own keys, they generally choose poor ones. They're far more likely to
choose “Barney” than “*9 (hH/A.” Thisis not always due to poor security practices; “Barney” is
easier to remember than “*9 (hH/A.” The world’'s most secure algorithm won’t help much if the
users habitually choose their spouse’ s names for keys or write their keys on little pieces of paper in
their wallets. A smart brute-force attack doesn't try all possible keysin numerical order; it tries the
obvious keysfirst.

Thisiscaled adictionary attack, because the attacker uses a dictionary of common keys. Daniel
Klein was able to crack 40 percent of the passwords on the average computer using this system
[847,848]. No, he didn’t try one password after another, trying to login. He copied the encrypted
password file and mounted the attack offline. Here’'swhat he tried:

1. Theuser’s name, initials, account name, and other relevant personal information asa
possible password. All in all, up to 130 different passwords were tried based on this
information. For an account name klone with a user named “Daniel V. Klein,” some of the
passwords that would be tried were: klone, klone0, klonel, klonel23, dvk, dvkdvk, dklein,
DKlein leinad, nielk, dvklein, danielk, DvkkvD, DANIEL-KLEIN, (klone), KleinD, and so on.
2. Words from various databases. These included lists of men’s and women’s names (some
16,000 in all); places (including variations so that “ spain,” “spanish,” and “spaniard” would all
be considered); names of famous people; cartoons and cartoon characters; titles, characters,
and locations from films and science fiction stories; mythical creatures (garnered from
Bullfinch’s Mythology and dictionaries of mythical beasts); sports (including team names,
nicknames, and specialized terms); numbers (both as numerals—*2001,” and written out—
“twelve”); strings of letters and numbers (“a,” “aa,” “aaa,” “aaaa,” etc.); Chinese syllables
(from the Pinyin Romanization of Chinese, an international standard system of writing
Chinese on an English keyboard); the King James Bible; biological terms; colloquial and
vulgar phrases (such as “fuckyou,” “ibmsux,” and “deadhead”); keyboard patterns (such as
“gwerty,” “asdf,” and “zxcvbn”); abbreviations (such as “roygbiv’—the colors in the rainbow,
and “ooottafagvah” —a mnemonic for remembering the 12 crania nerves); machine names
(acquired from /etc/hosts); characters, plays, and locations from Shakespeare; common

Y iddish words; the names of asteroids; and a collection of words from various technical papers
Klein previously published. All told, more than 60,000 separate words were considered per
user (with any inter- and intra-dictionary duplicates being discarded).

3. Variations on the words from step 2. This included making the first letter uppercase or a
control character, making the entire word uppercase, reversing the word (with and without the
aforementioned capitalization), changing the letter ‘0’ to the digit ‘0’ (so that the word
“scholar” would also be checked as “schOlar”), changing the letter ‘I’ to the digit ‘1" (so that
the word “scholar” would aso be checked as “scholar”), and performing similar manipulation
to change the letter *Z' into the digit ‘' 2’, and the letter s’ into the digit *'5'. Another test was to
make the word into a plural (irrespective of whether the word was actually a noun), with
enough intelligence built in so that “dress’ became “dresses,” “house” became “houses,” and
“daisy” became “daisies.” Klein did not consider pluralization rules exclusively, though, so
that “datum” forgivably became “datums’ (not “data’), while “ sphynx” became

“sphynxs’ (and not “sphynges’). Similarly, the suffixes “-ed,” “-er,” and “-ing” were added to
transform words like “phase” into “phased,” “phaser,” and “phasing.” These additional tests
added another 1,000,000 words to the list of possible passwords that were tested for each user.
4. Various capitalization variations on the words from step 2 that were not considered in step
3. Thisincluded all single-letter capitalization variations (so that “michael” would also be
checked as “michael,” “miChael,” “micHael,” “michAel,” etc.), double-letter capitalization
variations (“MIlchael,” “MiChael,” “MicHael,”..., “mIChael,” “micHael,” etc.), triple-letter
variations, etc. The single-letter variations added roughly another 400,000 words to be
checked per user, while the double-letter variations added another 1,500,000 words. Three-
letter variations would have added at least another 3,000,000 words per user had there been
enough time to compl ete the tests. Tests of four-, five-, and six-letter variations were deemed
to be impracticable without much more computational horsepower to carry them out.

5. Foreign language words on foreign users. The specific test that was performed was to try
Chinese language passwords on users with Chinese names. The Pinyin Romanization of
Chinese syllables was used, combining syllables together into one-, two-, and three-syllable
words. Because no tests were done to determine whether the words actually made sense, an
exhaustive search was initiated. Since there are 298 Chinese syllables in the Pinyin system,
there are 158,404 two-syllable words, and slightly more than 16,000,000 three-syllable words.
A similar mode of attack could as easily be used with English, using rules for building
pronounceabl e nonsense words.

6. Word pairs. The magnitude of an exhaustive test of this nature is staggering. To ssimplify
the test, only words of three or four characters in length from /usr/dict/words were used. Even
so, the number of word pairs is about ten million.

A dictionary attack is much more powerful when it isused against afile of keys and not asingle key.
A single user may be smart enough to choose good keys. If athousand people each choose their own
key as a password to a computer system, the odds are excellent that at |east one person will choose a
key in the attacker’ s dictionary.

Random Keys

Good keys are random-bit strings generated by some automatic process. If the key is 64 bitslong,
every possible 64-bit key must be equally likely. Generate the key bits from either areliably random
source (see Section 17.14) or a cryptographically secure pseudo-random-bit generator (see Chapters
16 and 17.) If these automatic processes are unavailable, flip acoin or roll adie.

Thisisimportant, but don’t get too caught up in arguing about whether random noise from audio
sources is more random than random noise from radioactive decay. None of these random-noise
sources will be perfect, but they will probably be good enough. It isimportant to use a good random-
number generator for key generation, but it is far more important to use good encryption algorithms
and key management procedures. If you are worried about the randomness of your keys, use the key-
crunching technique described below.

Some encryption algorithms have weak keys: specific keys that are less secure than the other keys. |
advise testing for these weak keys and generating a new one if you discover one. DES has only 16

weak keys out of 296, 50 the odds of generating any of these keys are incredibly small. It has been
argued that a cryptanalyst would have no idea that a weak key is being used and therefore gains no
advantage from their accidental use. It has also been argued that not using weak keys gives a
cryptanalyst information. However, testing for the few weak keysis so easy that it seems imprudent
not to do so.

Generating keys for public-key cryptography systemsis harder, because often the keys must have
certain mathematical properties (they may have to be prime, be a quadratic residue, etc.). Techniques
for generating large random prime numbers are discussed in Section 11.5. The important thing to
remember from a key management point of view is that the random seeds for those generators must
be just that: random.

Generating arandom key isn't always possible. Sometimes you need to remember your key. (See
how long it takes you to remember 25e8 56f2 e8ba c820). If you have to generate an easy-to-
remember key, make it obscure. The ideal would be something easy to remember, but difficult to
guess. Here are some suggestions:

— Word pairs separated by a punctuation character, for example “turtle* moose” or “zorch!
splat”

— Strings of |etters that are an acronym of alonger phrase; for example, “Mein
Luftkissenfahrzeug ist voller Aale!” generates the key “MLIVA!”

Pass Phrases

A better solution isto use an entire phrase instead of aword, and to convert that phrase into akey.
These phrases are called pass phrases. A technique called key crunching converts the easy-to-
remember phrases into random keys. Use a one-way hash function to transform an arbitrary-length
text string into a pseudo-random-bit string.

For example, the easy-to-remember text string:

My name is Ozymandi as, king of Kkings. Look on nmy works, ye mghty, and despair.

might crunch into this 64-bit key:

e6cl 4398 5ae9 0a9b

Of course, it can be difficult to type an entire phrase into a computer with the echo turned off. Clever
suggestions to solve this problem would be appreciated.

If the phrase islong enough, the resulting key will be random. Exactly what “long enough” meansis
open to interpretation. Information theory tells us that standard English has about 1.3 bits of
information per character (see Section 11.1). For a 64-bit key, a pass phrase of about 49 characters,
or 10 normal English words, should be sufficient. As arule of thumb, figure that you need five
words for each 4 bytes of key. That’s a conservative assumption, since it doesn’t take into account
case, spacing, and punctuation.

This technigue can even be used to generate private keys for public-key cryptography systems: The
text string could be crunched into a random seed, and that seed could be fed into a deterministic
system that generates public-key/private-key key pairs.

If you are choosing a pass phrase, choose something unique and easy-to-remember. Don’t choose
phrases from literature—the example from “Ozymandias’ is a bad one. Both the complete works of
Shakespeare and the dialogue from Star Wars are available on-line and can be used in a dictionary
attack. Choose something obscure, but personal. Include punctuation and capitalization; if you can,
include numbers and non-a phanumeric symbols. Poor or improper English, or even aforeign
language, makes the pass phrase less susceptible to adictionary attack. One suggestion isto use a
phrase that is “shocking nonsense”: something offensive enough that you are likely to remember and
unlikely to write down.

Despite everything written here, obscurity is no substitute for true randomness. The best keys are
random keys, difficult as they are to remember.

X9.17 Key Generation

The ANSI X9.17 standard specifies amethod of key generation (see Figure 8.1) [55]. This does not
generate easy-to-remember keys; it is more suitable for generating session keys or pseudo-random
numbers within a system. The cryptographic algorithm used to generate keysistriple-DES, but it
could just as easily be any algorithm.

Let E (X) betriple-DES encryption of X with key K. Thisis aspecial key reserved for secret key
generation. V is a secret 64-bit seed. T is atimestamp. To generate the random key R,, calculate:

R =E(Ex(T)) O V)

To generate V. ., calculate:

1,+1
Vip = B (B (T) O R)

Toturn R into aDES key, simply adjust every eighth bit for parity. If you need a 64-bit key, use it
asis. If you need a 128-bit key, generate a pair of keys and concatenate them together.

DoD Key Generation

The U.S. Department of Defense recommends using DES in OFB mode (see Section 9.8) to generate
random keys[1144]. Generate a DES key from system interrupt vectors, system status registers, and
system counters. Generate an initialization vector from the system clock, system ID, and date and
time. For the plaintext, use an externally generated 64-bit quantity: eight characterstyped in by a
system administrator, for example. Use the output as your key.

8.2 Nonlinear Keyspaces

Imagine that you are a military cryptography organization, building a piece of cryptography
equipment for your troops. Y ou want to use a secure algorithm, but you are worried about the
equipment falling into enemy hands. The last thing you want is for your enemy to be able to use the
equipment to protect their secrets.

5".«—|-| Errcrypt:

o5
]
%
-

1’,—-{5—-| Ererypt » i,

Figure8.1 ANS X9.17 key generation.

If you can put your algorithm in a tamperproof module, here’ s what you can do. Y ou can require
keys of a specia and secret form; all other keyswill cause the module to encrypt and decrypt using a
severely weakened algorithm. Y ou can make it so that the odds of someone, not knowing this special
form but accidentally stumbling on a correct key, are vanishingly small.

Thisiscalled anonlinear keyspace, because all the keys are not equally strong. (The oppositeisa
linear, or flat, keyspace.) An easy way to do thisisto create the key as two parts: the key itself and
some fixed string encrypted with that key. The module decrypts the string with the key; if it gets the
fixed string it uses the key normally, if not it uses a different, weak algorithm. If the algorithm has a
128-hit key and a 64-hit block size, the overall key is 192 bits; this gives the algorithm an effective

key of 2128, but makes the odds of randomly choosing a good key onein 254,

Y ou can be even subtler. You can design an algorithm such that certain keys are stronger than others.
An agorithm can have no weak keys—keysthat are obviously very poor—and can still have a
nonlinear keyspace.

This only worksiif the algorithm is secret and the enemy can’t reverse-engineer it, or if the difference
in key strength is subtle enough that the enemy can’t figure it out. The NSA did this with the secret
algorithmsin their Overtake modules (see Section 25.1). Did they do the same thing with Skipjack
(see Section 13.12)? No one knows.

8.3 Transferring Keys

Alice and Bob are going to use a symmetric cryptographic algorithm to communicate securely; they
need the same key. Alice generates akey using arandom-key generator. Now she hasto giveit to
Bob—securely. If Alice can meet Bob somewhere (a back alley, a windowless room, or one of
Jupiter’ s moons), she can give him a copy of the key. Otherwise, they have a problem. Public-key
cryptography solves the problem nicely and with a minimum of prearrangement, but these
techniques are not always available (see Section 3.1). Some systems use alternate channels known to
be secure. Alice could send Bob the key with a trusted messenger. She could send it by certified mail
or viaan overnight delivery service. She could set up another communications channel with Bob and
hope no one is eavesdropping on that one.

Alice could send Bob the symmetric key over their communications channel—the one they are going
to encrypt. Thisisfoolish; if the channel warrants encryption, sending the encryption key in the clear
over the same channel guarantees that anyone eavesdropping on the channel can decrypt al
communications.

The X9.17 standard [55] specifies two types of keys. key-encryption keys and data keys. K ey-
Encryption Keys encrypt other keys for distribution. Data K eys encrypt message traffic. These key-
encrypting keys have to be distributed manually (although they can be secured in a tamperproof
device, like asmart card), but only seldomly. Data keys are distributed more often. More details are
in[75]. Thistwo-tiered key concept is used alot in key distribution.

Another solution to the distribution problem splits the key into several different parts (see Section
3.6) and sends each of those parts over a different channel. One part could be sent over the
telephone, one by mail, one by overnight delivery service, one by carrier pigeon, and so on. (see
Figure 8.2). Since an adversary could collect all but one of the parts and still have no idea what the
key is, this method will work in all but extreme cases. Section 3.6 discusses schemes for splitting a
key into several parts. Alice could even use a secret sharing scheme (see Section 3.7), allowing Bob
to reconstruct the key if some of the shares are lost in transmission.

Alice sends Bob the key-encryption key securely, either by aface-to-face meeting or the splitting
technique just discussed. Once Alice and Bob both have the key-encryption key, Alice can send Bob
daily data keys over the same communications channel. Alice encrypts each data key with the key-
encryption key. Since the amount of traffic being encrypted with the key-encryption key islow, it
does not have to be changed as often. However, since compromise of the key-encryption key could
compromise every message encrypted with every key that was encrypted with the key-encryption
key, it must be stored securely.

Key Distribution in Large Networks

Key-encryption keys shared by pairs of users work well in small networks, but can quickly get
cumbersome if the networks become large. Since every pair of users must exchange keys, the total
number of key exchanges required in an n-person network is n(n — 1)/2.

In a six-person network, 15 key exchanges are required. In a 1000-person network, nearly 500,000
key exchanges are required. In these cases, creating a central key server (or servers) makes the
operation much more efficient.

Alternatively, any of the symmetric-cryptography or public-key-cryptography protocolsin Section
3.1 provides for secure key distribution.

8.4 Verifying Keys

When Bob receives a key, how does he know it came from Alice and not from someone pretending
to be Alice? If Alice givesit to him when they are face-to-face, it’s easy. If Alice sends her key viaa
trusted courier, then Bob hasto trust the courier. If the key is encrypted with a key-encryption key,
then Bob hasto trust the fact that only Alice hasthat key. If Alice uses adigital signature protocol to
sign the key, Bob has to trust the public-key database when he verifies that signature. (He also hasto
trust that Alice has kept her key secure.) If aKey Distribution Center (KDC) signs Alice' s public
key, Bob has to trust that his copy of the KDC'’s public key has not been tampered with.

In the end, someone who controls the entire network around Bob can make him think whatever he
likes. Mallory could send an encrypted and signed message purporting to be from Alice. When Bob
tried to access the public-key database to verify Alice' s signature, Mallory could substitute his own
public key. Mallory could invent his own false KDC and exchange the real KDC’s public key for his
own creation. Bob wouldn’t be the wiser.

Some people have used this argument to claim that public-key cryptography is useless. Since the
only way for Alice and Bob to ensure that their keys have not been tampered with is to meet face-to-
face, public-key cryptography doesn’t enhance security at all.

Thisview isnaive. It istheoretically true, but reality isfar more complicated. Public-key
cryptography, used with digital signatures and trusted KDCs, makes it much more difficult to
substitute one key for another. Bob can never be absolutely certain that Mallory isn’t controlling his
entire reality, but Bob can be confident that doing so requires more resources than most real-world
Mallorys have access to.

Bob could also verify Alice s key over the telephone, where he can hear her voice. Voice recognition
isareally good authentication scheme. If it’s a public key, he can safely reciteit in public. If it'sa
secret key, he can use aone-way hash function to verify the key. Both PGP (see Section 24.12) and
the AT&T TSD (see Section 24.18) use this kind of key verification.

Sometimes, it may not even be important to verify exactly whom a public key belongsto. It may be
necessary to verify that it belongs to the same person to whom it belonged last year. If someone
sends a signed withdrawal message to a bank, the bank does not have to be concerned with who
withdraws the money, only whether it is the same person who deposited the money in thefirst place.

Error Detection during Key Transmission

Sometimes keys get garbled in transmission. Since a garbled key can mean megabytes of
undecryptable ciphertext, thisis a problem. All keys should be transmitted with some kind of error
detection and correction bits. Thisway errorsin transmission can be easily detected and, if required,
the key can be resent.

One of the most widely used methods is to encrypt a constant value with the key, and to send the
first 2 to 4 bytes of that ciphertext along with the key. At the receiving end, do the same thing. If the
encrypted constants match, then the key has been transmitted without error. The chance of an

undetected error ranges from onein 216 to onein 232.
Key-error Detection during Decryption

Sometimes the receiver wants to check if a particular key he hasis the correct symmetric decryption
key. If the plaintext message is something like ASCII, he can try to decrypt and read the message. If
the plaintext is random, there are other tricks.

The naive approach isto attach a verification block: a known header to the plaintext message before
encryption. At the receiving end, Bob decrypts the header and verifiesthat it is correct. This works,
but it gives Eve aknown plaintext to help cryptanalyze the system. It also makes attacks against
short-key ciphers like DES and all exportable ciphers easy. Precal cul ate the checksum once for each
key, then use that checksum to determine the key in any message you intercept after that. Thisisa
feature of any key checksum that doesn’t include random or at least different data in each checksum.
It'svery similar in concept to using salt when generating keys from passphrases.

Here' s a better way to do this [821]:

(1) Generatean IV (not the one used for the message).

(2) Usethat IV to generate alarge block of bits: say, 512.

(3) Hash the result.

(4) Usethe same fixed bits of the hash, say 32, for the key checksum.

This gives Eve some information, but very little. If she triesto use the low 32 bits of the final hash
value to mount a brute-force attack, she has to do multiple encryptions plus a hash per candidate key;
brute-force on the key itself would be quicker.

She a'so gets no known-plaintext values to try out, and even if she manages to choose our random
value for us, she never gets a chosen-plaintext out of us, since it goes through the hash function
before she seesit.

8.5UsingKeys

Software encryption is scary. Gone are the days of simple microcomputers under the control of
single programs. Now there’s Macintosh System 7, Windows NT, and UNIX. You can't tell when
the operating system will suspend the encryption application in progress, write everything to disk,
and take care of some pressing task. When the operating system finally gets back to encrypting
whatever is being encrypted, everything will look just fine. No one will ever redlize that the
operating system wrote the encryption application to disk, and that it wrote the key along with it. The
key will sit on the disk, unencrypted, until the computer writes over that area of memory again. It
could be minutes or it could be months. It could even be never; the key could still be sitting there
when an adversary goes over the hard drive with a fine-tooth comb. In a preemptive, multitasking
environment, you can set your encryption operation to a high enough priority so it will not be
interrupted. This would mitigate the risk. Even so, the whole thing is dicey at best.

Hardware implementations are safer. Many encryption devices are designed to erase the key if
tampered with. For example, the IBM PS/2 encryption card has an epoxy unit containing the DES
chip, battery, and memory. Of course, you have to trust the hardware manufacturer to implement the
feature properly.

Some communications applications, such as telephone encryptors, can use session keys. A session
key isakey that isjust used for one communications session—a single telephone conversation—and
then discarded. Thereis no reason to store the key after it has been used. And if you use some key-
exchange protocol to transfer the key from one conversant to the other, the key doesn’t have to be
stored beforeit isused either. Thismakesit far less likely that the key might be compromised.

Controlling Key Usage

In some applications it may be desirable to control how a session key is used. Some users may need
session keys only for encryption or only for decryption. Session keys might only be authorized for
use on a certain machine or at a certain time. One scheme to handle these sorts of restrictions
attaches a Control Vector (CV) to the key; the control vector specifies the uses and restrictions for
that key (see Section 24.1) [1025,1026]. This CV is hashed and X ORed with a master key; the result
is used as an encryption key to encrypt the session key. The resultant encrypted session key is then
stored with the CV. To recover the session key, hash the CV and XOR it with the master key, and
use the result to decrypt the encrypted session key.

The advantages of this scheme are that the CV can be of arbitrary length and that it is always stored
in the clear with the encrypted key. This scheme assumes quite a bit about tamperproof hardware and
the inability of usersto get at the keys directly. This system is discussed further in Sections 24.1 and
24.8.

8.6 Updating Keys

Imagine an encrypted data link where you want to change keys daily. Sometimesit's apain to
distribute a new key every day. An easier solution isto generate a new key from